File size: 13,136 Bytes
458ecfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7846346
c572783
 
 
458ecfb
c572783
458ecfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e38d6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import json
import mimetypes
import os
import sys
import tempfile

import gradio as gr
import requests

sys.path.insert(0, os.path.dirname(__file__))

import schemdraw
from frontend.gradio_agentchatbot.agentchatbot import AgentChatbot
from frontend.gradio_agentchatbot.utils import ChatFileMessage, ChatMessage, ThoughtMetadata
from lagent.schema import AgentStatusCode
from schemdraw import flow


import os



os.system("pip show starlette")
# os.system("pip install -r requirements.txt")
os.system("pip install tenacity")
os.system("python -m mindsearch.app --lang en --model_format internlm_silicon --search_engine DuckDuckGoSearch &")


print('MindSearch is running on http://')

PLANNER_HISTORY = []
SEARCHER_HISTORY = []


def create_search_graph(adjacency_list: dict):
    import matplotlib.pyplot as plt

    plt.rcParams["font.sans-serif"] = ["SimHei"]

    with schemdraw.Drawing(fontsize=10, unit=1) as graph:
        node_pos, nodes, edges = {}, {}, []
        if "root" in adjacency_list:
            queue, layer, response_level = ["root"], 0, 0
            while queue:
                layer_len = len(queue)
                for i in range(layer_len):
                    node_name = queue.pop(0)
                    node_pos[node_name] = (layer * 5, -i * 3)
                    for item in adjacency_list[node_name]:
                        if item["name"] == "response":
                            response_level = max(response_level, (layer + 1) * 5)
                        else:
                            queue.append(item["name"])
                        edges.append((node_name, item["name"]))
                layer += 1
            for node_name, (x, y) in node_pos.items():
                if node_name == "root":
                    node = flow.Terminal().label(node_name).at((x, y)).color("pink")
                else:
                    node = flow.RoundBox(w=3.5, h=1.75).label(node_name).at((x, y)).color("teal")
                nodes[node_name] = node
            if response_level:
                response_node = (
                    flow.Terminal().label("response").at((response_level, 0)).color("orange")
                )
                nodes["response"] = response_node
            for start, end in edges:
                flow.Arc3(arrow="->").linestyle("--" if end == "response" else "-").at(
                    nodes[start].E
                ).to(nodes[end].W).color("grey" if end == "response" else "lightblue")
    return graph


def draw_search_graph(adjacency_list: dict, suffix=".png", dpi=360) -> str:
    g = create_search_graph(adjacency_list)
    path = tempfile.mktemp(suffix=suffix)
    g.save(path, dpi=dpi)
    return path


def rst_mem():
    """Reset the chatbot memory."""
    if PLANNER_HISTORY:
        PLANNER_HISTORY.clear()
    return [], [], 0


def format_response(gr_history, message, response, idx=-1):
    if idx < 0:
        idx = len(gr_history) + idx
    if message["stream_state"] == AgentStatusCode.STREAM_ING:
        gr_history[idx].content = response
    elif message["stream_state"] == AgentStatusCode.CODING:
        if gr_history[idx].thought_metadata.tool_name is None:
            gr_history[idx].content = gr_history[idx].content.split("<|action_start|>")[0]
            gr_history.insert(
                idx + 1,
                ChatMessage(
                    role="assistant",
                    content=response,
                    thought_metadata=ThoughtMetadata(tool_name="πŸ–₯️ Code Interpreter"),
                ),
            )
        else:
            gr_history[idx].content = response
    elif message["stream_state"] == AgentStatusCode.PLUGIN_START:
        if isinstance(response, dict):
            response = json.dumps(response, ensure_ascii=False, indent=4)
        if gr_history[idx].thought_metadata.tool_name is None:
            gr_history[idx].content = gr_history[idx].content.split("<|action_start|>")[0]
            gr_history.insert(
                idx + 1,
                ChatMessage(
                    role="assistant",
                    content="```json\n" + response,
                    thought_metadata=ThoughtMetadata(tool_name="🌐 Web Browser"),
                ),
            )
        else:
            gr_history[idx].content = "```json\n" + response
    elif message["stream_state"] == AgentStatusCode.PLUGIN_END and isinstance(response, dict):
        gr_history[idx].content = (
            f"```json\n{json.dumps(response, ensure_ascii=False, indent=4)}\n```"
        )
    elif message["stream_state"] in [AgentStatusCode.CODE_RETURN, AgentStatusCode.PLUGIN_RETURN]:
        try:
            content = json.loads(message["content"])
        except json.decoder.JSONDecodeError:
            content = message["content"]
        if gr_history[idx].thought_metadata.tool_name:
            gr_history.insert(
                idx + 1,
                ChatMessage(
                    role="assistant",
                    content=(
                        content
                        if isinstance(content, str)
                        else f"\n```json\n{json.dumps(content, ensure_ascii=False, indent=4)}\n```\n"
                    ),
                    thought_metadata=ThoughtMetadata(tool_name="Execution"),
                ),
            )
            gr_history.insert(idx + 2, ChatMessage(role="assistant", content=""))


def predict(history_planner, history_searcher, node_cnt):

    def streaming(raw_response):
        for chunk in raw_response.iter_lines(
            chunk_size=8192, decode_unicode=False, delimiter=b"\n"
        ):
            if chunk:
                decoded = chunk.decode("utf-8")
                if decoded == "\r":
                    continue
                if decoded[:6] == "data: ":
                    decoded = decoded[6:]
                elif decoded.startswith(": ping - "):
                    continue
                response = json.loads(decoded)
                yield (
                    response["current_node"],
                    (
                        response["response"]["formatted"]["node"][response["current_node"]]
                        if response["current_node"]
                        else response["response"]
                    ),
                    response["response"]["formatted"]["adjacency_list"],
                )

    global PLANNER_HISTORY
    PLANNER_HISTORY.extend(history_planner[-3:])
    search_graph_msg = history_planner[-1]

    url = "http://localhost:8002/solve"
    data = {"inputs": PLANNER_HISTORY[-3].content}
    raw_response = requests.post(url, json=data, timeout=60, stream=True)

    node_id2msg_idx = {}
    for resp in streaming(raw_response):
        node_name, agent_message, adjacency_list = resp
        dedup_nodes = set(adjacency_list) | {
            val["name"] for vals in adjacency_list.values() for val in vals
        }
        if dedup_nodes and len(dedup_nodes) != node_cnt:
            node_cnt = len(dedup_nodes)
            graph_path = draw_search_graph(adjacency_list)
            search_graph_msg.file.path = graph_path
            search_graph_msg.file.mime_type = mimetypes.guess_type(graph_path)[0]
        if node_name:
            if node_name in ["root", "response"]:
                continue
            node_id = f'【{node_name}】{agent_message["content"]}'
            agent_message = agent_message["response"]
            response = (
                agent_message["formatted"]["action"]
                if agent_message["stream_state"]
                in [AgentStatusCode.PLUGIN_START, AgentStatusCode.PLUGIN_END]
                else agent_message["formatted"] and agent_message["formatted"].get("thought")
            )
            if node_id not in node_id2msg_idx:
                node_id2msg_idx[node_id] = len(history_searcher) + 1
                history_searcher.append(ChatMessage(role="user", content=node_id))
                history_searcher.append(ChatMessage(role="assistant", content=""))
            offset = len(history_searcher)
            format_response(history_searcher, agent_message, response, node_id2msg_idx[node_id])
            flag, incr = False, len(history_searcher) - offset
            for key, value in node_id2msg_idx.items():
                if flag or key == node_id:
                    node_id2msg_idx[key] = value + incr
                    if not flag:
                        flag = True
            yield history_planner, history_searcher, node_cnt
        else:
            response = (
                agent_message["formatted"]["action"]
                if agent_message["stream_state"]
                in [AgentStatusCode.CODING, AgentStatusCode.CODE_END]
                else agent_message["formatted"] and agent_message["formatted"].get("thought")
            )
            format_response(history_planner, agent_message, response, -2)
            if agent_message["stream_state"] == AgentStatusCode.END:
                PLANNER_HISTORY = history_planner
            yield history_planner, history_searcher, node_cnt
    return history_planner, history_searcher, node_cnt


with gr.Blocks(css=os.path.join(os.path.dirname(__file__), "css", "gradio_front.css")) as demo:
    with gr.Column(elem_classes="chat-box"):
        gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""")
        gr.HTML(
            """<p style="text-align: center; font-family: Arial, sans-serif;">
                MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance.
                You can deploy your own Perplexity.ai-style search engine using either
                closed-source LLMs (GPT, Claude)
                or open-source LLMs (InternLM2.5-7b-chat).</p> """
        )
        gr.HTML(
            """
        <div style="text-align: center; font-size: 16px;">
        <a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px;
         text-decoration: none; color: #4A90E2;" target="_blank">πŸ”— GitHub</a>
        <a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px;
         text-decoration: none; color: #4A90E2;" target="_blank">πŸ“„ Arxiv</a>
        <a href="https://huggingface.co/papers/2407.20183" style="margin-right:
         15px; text-decoration: none; color: #4A90E2;" target="_blank">πŸ“š Hugging Face Papers</a>
        <a href="https://huggingface.co/spaces/internlm/MindSearch"
         style="text-decoration: none; color: #4A90E2;" target="_blank">πŸ€— Hugging Face Demo</a>
        </div>"""
        )
    gr.HTML(
        """
       <h1 align='right'><img
        src=
        'https://raw.githubusercontent.com/InternLM/MindSearch/98fd84d566fe9e3adc5028727f72f2944098fd05/assets/logo.svg'
         alt='MindSearch Logo1' class="logo" width="200"></h1> """
    )
    node_count = gr.State(0)
    with gr.Row():
        planner = AgentChatbot(
            label="planner",
            height=600,
            show_label=True,
            show_copy_button=True,
            bubble_full_width=False,
            render_markdown=True,
            elem_classes="chatbot-container",
        )
        searcher = AgentChatbot(
            label="searcher",
            height=600,
            show_label=True,
            show_copy_button=True,
            bubble_full_width=False,
            render_markdown=True,
            elem_classes="chatbot-container",
        )
    with gr.Row(elem_classes="chat-box"):
        # Text input area
        user_input = gr.Textbox(
            show_label=False,
            placeholder="Type your message...",
            lines=1,
            container=False,
            elem_classes="editor",
            scale=4,
        )
        # Buttons (now in the same Row)
        submitBtn = gr.Button("submit", variant="primary", elem_classes="toolbarButton", scale=1)
        clearBtn = gr.Button("clear", variant="secondary", elem_classes="toolbarButton", scale=1)
    with gr.Row(elem_classes="examples-container"):
        examples_component = gr.Examples(
            [
                ["Find legal precedents in contract law."],
                ["What are the top 10 e-commerce websites?"],
                ["Generate a report on global climate change."],
            ],
            inputs=user_input,
            label="Try these examples:",
        )

    def user(query, history):
        history.append(ChatMessage(role="user", content=query))
        history.append(ChatMessage(role="assistant", content=""))
        graph_path = draw_search_graph({"root": []})
        history.append(
            ChatFileMessage(
                role="assistant",
                file=gr.FileData(path=graph_path, mime_type=mimetypes.guess_type(graph_path)[0]),
            )
        )
        return "", history

    submitBtn.click(user, [user_input, planner], [user_input, planner], queue=False).then(
        predict,
        [planner, searcher, node_count],
        [planner, searcher, node_count],
    )
    clearBtn.click(rst_mem, None, [planner, searcher, node_count], queue=False)

demo.queue()
demo.launch()
# demo.launch(server_name="0.0.0.0", inbrowser=True, share=False)