--- title: MindSearch111 emoji: 📊 colorFrom: purple colorTo: yellow sdk: gradio sdk_version: 5.3.0 app_file: app.py pinned: false ---
[📃 Paper](https://arxiv.org/abs/2407.20183) | [đŸ’ģ Demo](https://internlm-chat.intern-ai.org.cn/) English | [įŽ€äŊ“中文](README_zh-CN.md)

## ✨ MindSearch: Mimicking Human Minds Elicits Deep AI Searcher ## 📅 Changelog - 2024/11/05: đŸĨŗ MindSearch is now deployed on Puyu! 👉 [Try it](https://internlm-chat.intern-ai.org.cn/) 👈 - Refactored the agent module based on [Lagent v0.5](https://github.com/InternLM/lagent) for better performance in concurrency. - Improved the UI to embody the simultaneous multi-query search. ## âšŊī¸ Build Your Own MindSearch ### Step1: Dependencies Installation ```bash git clone https://github.com/InternLM/MindSearch cd MindSearch pip install -r requirements.txt ``` ### Step2: Setup Environment Variables Before setting up the API, you need to configure environment variables. Rename the `.env.example` file to `.env` and fill in the required values. ```bash mv .env.example .env # Open .env and add your keys and model configurations ``` ### Step3: Setup MindSearch API Setup FastAPI Server. ```bash python -m mindsearch.app --lang en --model_format internlm_silicon --search_engine DuckDuckGoSearch --asy ``` - `--lang`: language of the model, `en` for English and `cn` for Chinese. - `--model_format`: format of the model. - `internlm_server` for InternLM2.5-7b-chat with local server. (InternLM2.5-7b-chat has been better optimized for Chinese.) - `gpt4` for GPT4. if you want to use other models, please modify [models](./mindsearch/agent/models.py) - `--search_engine`: Search engine. - `DuckDuckGoSearch` for search engine for DuckDuckGo. - `BingSearch` for Bing search engine. - `BraveSearch` for Brave search web api engine. - `GoogleSearch` for Google Serper web search api engine. - `TencentSearch` for Tencent search api engine. Please set your Web Search engine API key as the `WEB_SEARCH_API_KEY` environment variable unless you are using `DuckDuckGo`, or `TencentSearch` that requires secret id as `TENCENT_SEARCH_SECRET_ID` and secret key as `TENCENT_SEARCH_SECRET_KEY`. - `--asy`: deploy asynchronous agents. ### Step4: Setup MindSearch Frontend Providing following frontend interfaces, - React First configurate the backend URL for Vite proxy. ```bash HOST="127.0.0.1" # modify as you need PORT=8002 sed -i -r "s/target:\s*\"\"/target: \"${HOST}:${PORT}\"/" frontend/React/vite.config.ts ``` ```bash # Install Node.js and npm # for Ubuntu sudo apt install nodejs npm # for windows # download from https://nodejs.org/zh-cn/download/prebuilt-installer # Install dependencies cd frontend/React npm install npm start ``` Details can be found in [React](./frontend/React/README.md) - Gradio ```bash python frontend/mindsearch_gradio.py ``` - Streamlit ```bash streamlit run frontend/mindsearch_streamlit.py ``` ## 🌐 Change Web Search API To use a different type of web search API, modify the `searcher_type` attribute in the `searcher_cfg` located in `mindsearch/agent/__init__.py`. Currently supported web search APIs include: - `GoogleSearch` - `DuckDuckGoSearch` - `BraveSearch` - `BingSearch` - `TencentSearch` For example, to change to the Brave Search API, you would configure it as follows: ```python BingBrowser( searcher_type='BraveSearch', topk=2, api_key=os.environ.get('BRAVE_API_KEY', 'YOUR BRAVE API') ) ``` ## 🐞 Using the Backend Without Frontend For users who prefer to interact with the backend directly, use the `backend_example.py` script. This script demonstrates how to send a query to the backend and process the response. ```bash python backend_example.py ``` Make sure you have set up the environment variables and the backend is running before executing the script. ## 🐞 Debug Locally ```bash python -m mindsearch.terminal ``` ## 📝 License This project is released under the [Apache 2.0 license](LICENSE). ## Citation If you find this project useful in your research, please consider cite: ``` @article{chen2024mindsearch, title={MindSearch: Mimicking Human Minds Elicits Deep AI Searcher}, author={Chen, Zehui and Liu, Kuikun and Wang, Qiuchen and Liu, Jiangning and Zhang, Wenwei and Chen, Kai and Zhao, Feng}, journal={arXiv preprint arXiv:2407.20183}, year={2024} } ``` ## Our Projects Explore our additional research on large language models, focusing on LLM agents. - [Lagent](https://github.com/InternLM/lagent): A lightweight framework for building LLM-based agents - [AgentFLAN](https://github.com/InternLM/Agent-FLAN): An innovative approach for constructing and training with high-quality agent datasets (ACL 2024 Findings) - [T-Eval](https://github.com/open-compass/T-Eval): A Fine-grained tool utilization evaluation benchmark (ACL 2024)