---
title: MindSearch111
emoji: đ
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 5.3.0
app_file: app.py
pinned: false
---
[đ Paper](https://arxiv.org/abs/2407.20183) | [đģ Demo](https://internlm-chat.intern-ai.org.cn/)
English | [įŽäŊä¸æ](README_zh-CN.md)
## ⨠MindSearch: Mimicking Human Minds Elicits Deep AI Searcher
## đ
Changelog
- 2024/11/05: đĨŗ MindSearch is now deployed on Puyu! đ [Try it](https://internlm-chat.intern-ai.org.cn/) đ
- Refactored the agent module based on [Lagent v0.5](https://github.com/InternLM/lagent) for better performance in concurrency.
- Improved the UI to embody the simultaneous multi-query search.
## âŊī¸ Build Your Own MindSearch
### Step1: Dependencies Installation
```bash
git clone https://github.com/InternLM/MindSearch
cd MindSearch
pip install -r requirements.txt
```
### Step2: Setup Environment Variables
Before setting up the API, you need to configure environment variables. Rename the `.env.example` file to `.env` and fill in the required values.
```bash
mv .env.example .env
# Open .env and add your keys and model configurations
```
### Step3: Setup MindSearch API
Setup FastAPI Server.
```bash
python -m mindsearch.app --lang en --model_format internlm_silicon --search_engine DuckDuckGoSearch --asy
```
- `--lang`: language of the model, `en` for English and `cn` for Chinese.
- `--model_format`: format of the model.
- `internlm_server` for InternLM2.5-7b-chat with local server. (InternLM2.5-7b-chat has been better optimized for Chinese.)
- `gpt4` for GPT4.
if you want to use other models, please modify [models](./mindsearch/agent/models.py)
- `--search_engine`: Search engine.
- `DuckDuckGoSearch` for search engine for DuckDuckGo.
- `BingSearch` for Bing search engine.
- `BraveSearch` for Brave search web api engine.
- `GoogleSearch` for Google Serper web search api engine.
- `TencentSearch` for Tencent search api engine.
Please set your Web Search engine API key as the `WEB_SEARCH_API_KEY` environment variable unless you are using `DuckDuckGo`, or `TencentSearch` that requires secret id as `TENCENT_SEARCH_SECRET_ID` and secret key as `TENCENT_SEARCH_SECRET_KEY`.
- `--asy`: deploy asynchronous agents.
### Step4: Setup MindSearch Frontend
Providing following frontend interfaces,
- React
First configurate the backend URL for Vite proxy.
```bash
HOST="127.0.0.1" # modify as you need
PORT=8002
sed -i -r "s/target:\s*\"\"/target: \"${HOST}:${PORT}\"/" frontend/React/vite.config.ts
```
```bash
# Install Node.js and npm
# for Ubuntu
sudo apt install nodejs npm
# for windows
# download from https://nodejs.org/zh-cn/download/prebuilt-installer
# Install dependencies
cd frontend/React
npm install
npm start
```
Details can be found in [React](./frontend/React/README.md)
- Gradio
```bash
python frontend/mindsearch_gradio.py
```
- Streamlit
```bash
streamlit run frontend/mindsearch_streamlit.py
```
## đ Change Web Search API
To use a different type of web search API, modify the `searcher_type` attribute in the `searcher_cfg` located in `mindsearch/agent/__init__.py`. Currently supported web search APIs include:
- `GoogleSearch`
- `DuckDuckGoSearch`
- `BraveSearch`
- `BingSearch`
- `TencentSearch`
For example, to change to the Brave Search API, you would configure it as follows:
```python
BingBrowser(
searcher_type='BraveSearch',
topk=2,
api_key=os.environ.get('BRAVE_API_KEY', 'YOUR BRAVE API')
)
```
## đ Using the Backend Without Frontend
For users who prefer to interact with the backend directly, use the `backend_example.py` script. This script demonstrates how to send a query to the backend and process the response.
```bash
python backend_example.py
```
Make sure you have set up the environment variables and the backend is running before executing the script.
## đ Debug Locally
```bash
python -m mindsearch.terminal
```
## đ License
This project is released under the [Apache 2.0 license](LICENSE).
## Citation
If you find this project useful in your research, please consider cite:
```
@article{chen2024mindsearch,
title={MindSearch: Mimicking Human Minds Elicits Deep AI Searcher},
author={Chen, Zehui and Liu, Kuikun and Wang, Qiuchen and Liu, Jiangning and Zhang, Wenwei and Chen, Kai and Zhao, Feng},
journal={arXiv preprint arXiv:2407.20183},
year={2024}
}
```
## Our Projects
Explore our additional research on large language models, focusing on LLM agents.
- [Lagent](https://github.com/InternLM/lagent): A lightweight framework for building LLM-based agents
- [AgentFLAN](https://github.com/InternLM/Agent-FLAN): An innovative approach for constructing and training with high-quality agent datasets (ACL 2024 Findings)
- [T-Eval](https://github.com/open-compass/T-Eval): A Fine-grained tool utilization evaluation benchmark (ACL 2024)