Spaces:
Sleeping
Sleeping
File size: 5,550 Bytes
bc38547 3f6e9c6 bc38547 3f6e9c6 bc38547 3f6e9c6 bc38547 3f6e9c6 bc38547 3f6e9c6 bc38547 3f6e9c6 bc38547 3f6e9c6 bc38547 3f6e9c6 bc38547 3f6e9c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import time
import argparse
import numpy as np
import random
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import sys
import json
from collections import defaultdict
import math
import gradio as gr
from model import DistMult
from tqdm import tqdm
from utils import collate_list, detach_and_clone, move_to
from PIL import Image
from torchvision import transforms
_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN = [0.485, 0.456, 0.406]
_DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD = [0.229, 0.224, 0.225]
def evaluate(img, model, id2entity, target_list, args):
model.eval()
torch.set_grad_enabled(False)
overall_id_to_name = json.load(open('overall_id_to_name.json'))
img = Image.open(args.img_path).convert('RGB')
transform_steps = transforms.Compose([transforms.Resize((448, 448)), transforms.ToTensor(), transforms.Normalize(_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN, _DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD)])
h = transform_steps(img)
r = torch.tensor([3])
h = move_to(h, args.device).unsqueeze(0)
r = move_to(r, args.device).unsqueeze(0)
outputs = model.forward_ce(h, r, triple_type=('image', 'id'))
y_pred = detach_and_clone(outputs.cpu())
y_pred = y_pred.argmax(-1)
pred_label = target_list[y_pred].item()
species_label = overall_id_to_name[str(id2entity[pred_label])]
print('species label = {}'.format(species_label))
# predict multi-level classification
# def get_classification(img):
# image_tensor = transform_image(img)
# ort_inputs = {input_name: to_numpy(image_tensor)}
# x = ort_session.run(None, ort_inputs)
# predictions = torch.topk(torch.from_numpy(x[0]), k=5).indices.squeeze(0).tolist()
# result = {}
# for i in predictions:
# label = label_map[str(i)]
# prob = x[0][0, i].item()
# result[label] = prob
# return result
# iface.launch()
return species_label
def _get_id(dict, key):
id = dict.get(key, None)
if id is None:
id = len(dict)
dict[key] = id
return id
def generate_target_list(data, entity2id):
sub = data.loc[(data["datatype_h"] == "image") & (data["datatype_t"] == "id"), ['t']]
sub = list(sub['t'])
categories = []
for item in tqdm(sub):
if entity2id[str(int(float(item)))] not in categories:
categories.append(entity2id[str(int(float(item)))])
# print('categories = {}'.format(categories))
# print("No. of target categories = {}".format(len(categories)))
return torch.tensor(categories, dtype=torch.long).unsqueeze(-1)
if __name__=='__main__':
parser = argparse.ArgumentParser()
# parser.add_argument('--data-dir', type=str, default='data/iwildcam_v2.0/')
# parser.add_argument('--img-path', type=str, required=True, help='path to species image to be classified')
parser.add_argument('--seed', type=int, default=813765)
parser.add_argument('--ckpt-path', type=str, default=None, help='path to ckpt for restarting expt')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--no-cuda', action='store_true')
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--embedding-dim', type=int, default=512)
parser.add_argument('--location_input_dim', type=int, default=2)
parser.add_argument('--time_input_dim', type=int, default=1)
parser.add_argument('--mlp_location_numlayer', type=int, default=3)
parser.add_argument('--mlp_time_numlayer', type=int, default=3)
parser.add_argument('--img-embed-model', choices=['resnet18', 'resnet50'], default='resnet50')
parser.add_argument('--use-data-subset', action='store_true')
parser.add_argument('--subset-size', type=int, default=10)
args = parser.parse_args()
print('args = {}'.format(args))
args.device = torch.device('cuda') if not args.no_cuda and torch.cuda.is_available() else torch.device('cpu')
# Set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
datacsv = pd.read_csv('dataset_subtree.csv', low_memory=False)
entity_id_file = 'entity2id_subtree.json'
if not os.path.exists(entity_id_file):
entity2id = {} # each of triple types have their own entity2id
for i in tqdm(range(datacsv.shape[0])):
if datacsv.iloc[i,1] == "id":
_get_id(entity2id, str(int(float(datacsv.iloc[i,0]))))
if datacsv.iloc[i,-2] == "id":
_get_id(entity2id, str(int(float(datacsv.iloc[i,-3]))))
json.dump(entity2id, open(entity_id_file, 'w'))
else:
entity2id = json.load(open(entity_id_file, 'r'))
id2entity = {v:k for k,v in entity2id.items()}
num_ent_id = len(entity2id)
# print('len(entity2id) = {}'.format(len(entity2id)))
target_list = generate_target_list(datacsv, entity2id)
model = DistMult(args, num_ent_id, target_list, args.device)
model.to(args.device)
# restore from ckpt
if args.ckpt_path:
ckpt = torch.load(args.ckpt_path, map_location=args.device)
model.load_state_dict(ckpt['model'], strict=False)
print('ckpt loaded...')
species_model = gr.Interface(
evaluate,
[gr.inputs.Image(shape=(200, 200)), model, id2entity, target_list, args],
outputs="label",
title = 'Species Classification',
)
species_model.launch()
# evaluate(model, id2entity, target_list, args) |