File size: 5,550 Bytes
bc38547
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6e9c6
bc38547
 
 
 
 
 
 
 
 
 
 
3f6e9c6
bc38547
 
 
3f6e9c6
bc38547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6e9c6
 
bc38547
3f6e9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc38547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6e9c6
 
bc38547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6e9c6
bc38547
3f6e9c6
bc38547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6e9c6
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import time
import argparse
import numpy as np
import random
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import sys
import json
from collections import defaultdict
import math
import gradio as gr

from model import DistMult

from tqdm import tqdm
from utils import collate_list, detach_and_clone, move_to
from PIL import Image
from torchvision import transforms

_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN = [0.485, 0.456, 0.406]
_DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD = [0.229, 0.224, 0.225]

def evaluate(img, model, id2entity, target_list, args):
    model.eval()
    torch.set_grad_enabled(False)

    overall_id_to_name = json.load(open('overall_id_to_name.json'))

    img = Image.open(args.img_path).convert('RGB')
            
    transform_steps = transforms.Compose([transforms.Resize((448, 448)), transforms.ToTensor(), transforms.Normalize(_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN, _DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD)])
    h = transform_steps(img)
    r = torch.tensor([3])

    h = move_to(h, args.device).unsqueeze(0)
    r = move_to(r, args.device).unsqueeze(0)

    outputs = model.forward_ce(h, r, triple_type=('image', 'id'))

    y_pred = detach_and_clone(outputs.cpu())
    y_pred = y_pred.argmax(-1)

    pred_label = target_list[y_pred].item()
    species_label = overall_id_to_name[str(id2entity[pred_label])]
    print('species label = {}'.format(species_label))

    # predict multi-level classification
    
# def get_classification(img):

#     image_tensor = transform_image(img)
#     ort_inputs = {input_name: to_numpy(image_tensor)}
#     x = ort_session.run(None, ort_inputs)
#     predictions = torch.topk(torch.from_numpy(x[0]), k=5).indices.squeeze(0).tolist()

#     result = {}
#     for i in predictions:
#         label = label_map[str(i)]
#         prob = x[0][0, i].item()
#         result[label] = prob
#     return result



# iface.launch()

    
    return species_label

def _get_id(dict, key):
    id = dict.get(key, None)
    if id is None:
        id = len(dict)
        dict[key] = id
    return id

def generate_target_list(data, entity2id):
    sub = data.loc[(data["datatype_h"] == "image") & (data["datatype_t"] == "id"), ['t']]
    sub = list(sub['t'])
    categories = []
    for item in tqdm(sub):
        if entity2id[str(int(float(item)))] not in categories:
            categories.append(entity2id[str(int(float(item)))])
    # print('categories = {}'.format(categories))
    # print("No. of target categories = {}".format(len(categories)))
    return torch.tensor(categories, dtype=torch.long).unsqueeze(-1)



if __name__=='__main__':
    parser = argparse.ArgumentParser()
    # parser.add_argument('--data-dir', type=str, default='data/iwildcam_v2.0/')
    # parser.add_argument('--img-path', type=str, required=True, help='path to species image to be classified')
    parser.add_argument('--seed', type=int, default=813765)
    parser.add_argument('--ckpt-path', type=str, default=None, help='path to ckpt for restarting expt')
    parser.add_argument('--debug', action='store_true')
    parser.add_argument('--no-cuda', action='store_true')
    parser.add_argument('--batch_size', type=int, default=16)

    parser.add_argument('--embedding-dim', type=int, default=512)
    parser.add_argument('--location_input_dim', type=int, default=2)
    parser.add_argument('--time_input_dim', type=int, default=1)
    parser.add_argument('--mlp_location_numlayer', type=int, default=3)
    parser.add_argument('--mlp_time_numlayer', type=int, default=3)

    parser.add_argument('--img-embed-model', choices=['resnet18', 'resnet50'], default='resnet50')
    parser.add_argument('--use-data-subset', action='store_true')
    parser.add_argument('--subset-size', type=int, default=10)

    args = parser.parse_args()

    print('args = {}'.format(args))
    args.device = torch.device('cuda') if not args.no_cuda and torch.cuda.is_available() else torch.device('cpu')

    # Set random seed
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    datacsv = pd.read_csv('dataset_subtree.csv', low_memory=False)

    entity_id_file = 'entity2id_subtree.json'

    if not os.path.exists(entity_id_file):
        entity2id = {} # each of triple types have their own entity2id
        
        for i in tqdm(range(datacsv.shape[0])):
            if datacsv.iloc[i,1] == "id":
                _get_id(entity2id, str(int(float(datacsv.iloc[i,0]))))

            if datacsv.iloc[i,-2] == "id":
                _get_id(entity2id, str(int(float(datacsv.iloc[i,-3]))))
        json.dump(entity2id, open(entity_id_file, 'w'))
    else:
        entity2id = json.load(open(entity_id_file, 'r'))
    
    id2entity = {v:k for k,v in entity2id.items()}

    num_ent_id = len(entity2id)

    # print('len(entity2id) = {}'.format(len(entity2id)))
    
    target_list = generate_target_list(datacsv, entity2id)

    model = DistMult(args, num_ent_id, target_list, args.device)

    model.to(args.device)

    # restore from ckpt
    if args.ckpt_path:
        ckpt = torch.load(args.ckpt_path, map_location=args.device)
        model.load_state_dict(ckpt['model'], strict=False)
        print('ckpt loaded...')

    species_model = gr.Interface(
        evaluate,
        [gr.inputs.Image(shape=(200, 200)), model, id2entity, target_list, args],
        outputs="label",
        title = 'Species Classification',
    )
    species_model.launch()

    # evaluate(model, id2entity, target_list, args)