_demo42 / app.py
varl42's picture
Update app.py
5f6f8b5
raw
history blame
1.62 kB
import gradio as gr
import torch
import PyPDF2
from transformers import pipeline
import numpy
import scipy
from gtts import gTTS
from io import BytesIO
from transformers import BartTokenizer
def extract_text(pdf_file):
pdfReader = PyPDF2.PdfReader(pdf_file)
pageObj = pdfReader.pages[0]
return pageObj.extract_text()
def summarize_text(text):
sentences = text.split(". ")
for i, sentence in enumerate(sentences):
if "Abstract" in sentence:
start = i + 1
end = start + 3
break
abstract = ". ".join(sentences[start:end+1])
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer=tokenizer)
summary = summarizer(abstract, max_length=40, min_length=40,
do_sample=False)
return summary[0]['summary_text']
def text_to_audio(text):
tts = gTTS(text, lang='en')
buffer = BytesIO()
tts.write_to_fp(buffer)
buffer.seek(0)
return buffer.read()
def audio_pdf(pdf_file):
text = extract_text(pdf_file)
summary = summarize_text(text)
audio = text_to_audio(summary)
return summary, audio
inputs = gr.File()
summary_text = gr.Text()
audio_summary = gr.Audio()
iface = gr.Interface(
fn=audio_pdf,
inputs=inputs,
outputs=[summary_text,audio_summary],
title="PDF Audio Summarizer 📻",
description="App that converts an abstract into audio",
examples=["Attention_is_all_you_need.pdf",
"ImageNet_Classification.pdf"
]
)
iface.launch()