File size: 14,404 Bytes
fe2a0f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import pandas as pd
import os
from google.colab import drive
import logging
from datetime import datetime
from tqdm import tqdm
import time
import csv

def setup_logging():
    """Setup logging configuration"""
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    log_dir = 'logs'
    os.makedirs(f"{log_dir}/process", exist_ok=True)
    
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s | %(levelname)s | %(message)s',
        handlers=[
            logging.StreamHandler(),
            logging.FileHandler(f'{log_dir}/process/process_{timestamp}.log')
        ]
    )
    return timestamp

def mount_google_drive():
    """Mount Google Drive and return base path"""
    try:
        drive.mount('/content/drive')
        base_drive = "/content/drive/MyDrive"
        logging.info("Google Drive mounted successfully")
        return base_drive
    except Exception as e:
        logging.error(f"Failed to mount Google Drive: {e}")
        raise

def get_file_paths(base_drive):
    """Define input and output file paths"""
    return {
        "Temp22": {
            "input": f"{base_drive}/ss/temp22.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Temp2": {
            "input": f"{base_drive}/ss/temp2.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Temp3": {
            "input": f"{base_drive}/ss/temp3.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Temp4": {
            "input": f"{base_drive}/ss/temp4.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Tem3": {
            "input": f"{base_drive}/ss/tem3.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Debit": {
            "input": f"{base_drive}/Debit.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Fraud": {
            "input": f"{base_drive}/Fraud.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Impersonating_Email": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Impersonating_Email_messages_20241027_125715.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Cyber_Bullying": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Cyber_Bullying__Stalking__Sexting_messages_20241027_192454.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Profile_Hacking": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Profile_Hacking_Identity_Theft_messages_20241027_192454.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Cheating_Impersonation": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Cheating_by_Impersonation_messages_20241027_192454.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Fake_Profile": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_FakeImpersonating_Profile_messages_20241028_062409.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Provocative_Speech": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Provocative_Speech_for_unlawful_acts_messages_20241027_110606.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Matrimonial_Fraud": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Online_Matrimonial_Fraud_messages_20241027_125715.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Email_Phishing": {
            "input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_EMail_Phishing_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Intimidating_Email": {
            "input": f"{base_drive}/converted_iIntimidating_Email_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Call_Vishing": {
            "input": f"{base_drive}/subcategory_messages/Online_Financial_Fraud/converted_Fraud_CallVishing_messages_20241028_105333.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Business_Email_Compromise": {
            "input": f"{base_drive}/subcategory_messages/Online_Financial_Fraud/converted_Business_Email_CompromiseEmail_Takeover_messages_20241027_110606.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Demat_Fraud": {
            "input": f"{base_drive}/subcategory_messages/Online_Financial_Fraud/converted_DematDepository_Fraud_messages_20241027_110606.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Online_Gambling": {
            "input": f"{base_drive}/category_messages/converted_Online_Gambling__Betting_messages_20241028_070304.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Data_Breach": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Data_Breach_Theft_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "DDOS_Attacks": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Denial_of_Service_(DoS)_Distributed_Denial_of_Service_(DDOS)_attacks_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Malware_Attack": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Malware_Attack_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Hacking_Defacement": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Hacking_Defacement_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "SQL_Injection": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_SQL_Injection_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Ransomware_Attack": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Ransomware_Attack_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Source_Tampering": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Tampering_with_computer_source_documents_messages_20241028_070304.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Cryptocurrency_Fraud": {
            "input": f"{base_drive}/subcategory_messages/Cryptocurrency_Crime/converted_Cryptocurrency_Fraud_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Email_Hacking": {
            "input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Email_Hacking_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Unauthorised_Access": {
            "input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Unauthorised_AccessData_Breach_messages_20241028_143135.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Website_Defacement": {
            "input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Website_DefacementHacking_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Computer_Damage": {
            "input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Damage_to_computer_computer_systems_etc_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Cyber_Terrorism": {
            "input": f"{base_drive}/subcategory_messages/Cyber_Terrorism/converted_Cyber_Terrorism_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Online_Trafficking": {
            "input": f"{base_drive}/subcategory_messages/Online_Cyber_Trafficking/converted_Online_Trafficking_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Ransomware": {
            "input": f"{base_drive}/subcategory_messages/Ransomware/converted_Ransomware_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        },
        "Against_Sovereignty": {
            "input": f"{base_drive}/subcategory_messages/Report_Unlawful_Content/converted_Against_Interest_of_sovereignty_or_integrity_of_India_messages_20241027_130322.csv",
            "output": f"{base_drive}/jj.csv"
        }
    }

def process_file(input_path, output_path):
    """Process a single file and update the output CSV"""
    try:
        logging.info(f"\nProcessing file: {input_path}")
        
        # Read input file with converted messages
        input_df = pd.read_csv(input_path)
        logging.info(f"Input file loaded: {len(input_df)} rows")
        
        # Check if output file exists
        if os.path.exists(output_path):
            output_df = pd.read_csv(output_path)
            logging.info(f"Existing output file loaded: {len(output_df)} rows")
        else:
            # Create new output file with only required columns
            output_df = pd.DataFrame(columns=['v1', 'v2'])
            logging.info("Created new output file")
        
        # Track statistics
        stats = {
            'total_processed': 0,
            'new_entries': 0,
            'updates': 0,
            'start_time': time.time()
        }
        
        # Process each row
        with tqdm(total=len(input_df), desc="Processing messages") as pbar:
            for _, row in input_df.iterrows():
                try:
                    # Create new entry with only v1 and v2
                    new_row = {
                        'v1': 'ham',  # Set v1 as 'ham'
                        'v2': row['converted_message']  # Get converted message from input
                    }
                    output_df = pd.concat([output_df, pd.DataFrame([new_row])], ignore_index=True)
                    stats['new_entries'] += 1
                    stats['total_processed'] += 1
                    
                except Exception as e:
                    logging.error(f"Error processing row: {e}")
                    continue
                
                pbar.update(1)
                
                # Save periodically
                if stats['total_processed'] % 100 == 0:
                    output_df.to_csv(output_path, index=False)
                    logging.info(f"Periodic save: {stats['total_processed']} messages processed")
        
        # Final save
        output_df.to_csv(output_path, index=False)
        
        # Calculate statistics
        processing_time = time.time() - stats['start_time']
        avg_time = processing_time / max(stats['total_processed'], 1)  # Avoid division by zero
        
        logging.info(f"""
        Processing Complete:
        - Total Processed: {stats['total_processed']}
        - New Entries: {stats['new_entries']}
        - Updates: {stats['updates']}
        - Processing Time: {processing_time:.2f} seconds
        - Average Time per Message: {avg_time:.2f} seconds
        Output File: {output_path}
        """)
        
        return stats
        
    except Exception as e:
        logging.error(f"Error processing file {input_path}: {e}")
        raise

def generate_report(file_stats, timestamp):
    """Generate processing report"""
    report_dir = 'reports'
    os.makedirs(report_dir, exist_ok=True)
    
    report_path = f"{report_dir}/processing_report_{timestamp}.txt"
    
    with open(report_path, 'w') as f:
        f.write(f"""
        Processing Report - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
        ================================================================
        
        Files Processed:
        """)
        
        total_messages = 0
        total_new = 0
        total_updates = 0
        total_time = 0
        
        for file_name, stats in file_stats.items():
            f.write(f"""
            {file_name}:
            - Total Processed: {stats['total_processed']}
            - New Entries: {stats['new_entries']}
            - Updates: {stats['updates']}
            - Processing Time: {time.time() - stats['start_time']:.2f} seconds
            """)
            
            total_messages += stats['total_processed']
            total_new += stats['new_entries']
            total_updates += stats['updates']
            total_time += time.time() - stats['start_time']
        
        f.write(f"""
        ================================================================
        Summary:
        - Total Messages Processed: {total_messages}
        - Total New Entries: {total_new}
        - Total Updates: {total_updates}
        - Total Processing Time: {total_time:.2f} seconds
        - Average Time per Message: {total_time/total_messages:.2f} seconds
        ================================================================
        """)
    
    logging.info(f"Report generated: {report_path}")

def main():
    timestamp = setup_logging()
    logging.info("Starting processing...")
    
    try:
        # Mount Google Drive
        base_drive = mount_google_drive()
        
        # Get file paths
        file_paths = get_file_paths(base_drive)
        
        # Process each file
        file_stats = {}
        for file_name, paths in file_paths.items():
            logging.info(f"\nProcessing {file_name}...")
            
            try:
                stats = process_file(paths['input'], paths['output'])
                file_stats[file_name] = stats
            except Exception as e:
                logging.error(f"Error processing {file_name}: {e}")
                continue
        
        # Generate report
        generate_report(file_stats, timestamp)
        
        logging.info("Processing complete!")
        
    except Exception as e:
        logging.error(f"Critical error: {e}")
        raise

if __name__ == "__main__":
    main()