Spaces:
Sleeping
Sleeping
File size: 14,404 Bytes
fe2a0f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import pandas as pd
import os
from google.colab import drive
import logging
from datetime import datetime
from tqdm import tqdm
import time
import csv
def setup_logging():
"""Setup logging configuration"""
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
log_dir = 'logs'
os.makedirs(f"{log_dir}/process", exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s | %(levelname)s | %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler(f'{log_dir}/process/process_{timestamp}.log')
]
)
return timestamp
def mount_google_drive():
"""Mount Google Drive and return base path"""
try:
drive.mount('/content/drive')
base_drive = "/content/drive/MyDrive"
logging.info("Google Drive mounted successfully")
return base_drive
except Exception as e:
logging.error(f"Failed to mount Google Drive: {e}")
raise
def get_file_paths(base_drive):
"""Define input and output file paths"""
return {
"Temp22": {
"input": f"{base_drive}/ss/temp22.csv",
"output": f"{base_drive}/jj.csv"
},
"Temp2": {
"input": f"{base_drive}/ss/temp2.csv",
"output": f"{base_drive}/jj.csv"
},
"Temp3": {
"input": f"{base_drive}/ss/temp3.csv",
"output": f"{base_drive}/jj.csv"
},
"Temp4": {
"input": f"{base_drive}/ss/temp4.csv",
"output": f"{base_drive}/jj.csv"
},
"Tem3": {
"input": f"{base_drive}/ss/tem3.csv",
"output": f"{base_drive}/jj.csv"
},
"Debit": {
"input": f"{base_drive}/Debit.csv",
"output": f"{base_drive}/jj.csv"
},
"Fraud": {
"input": f"{base_drive}/Fraud.csv",
"output": f"{base_drive}/jj.csv"
},
"Impersonating_Email": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Impersonating_Email_messages_20241027_125715.csv",
"output": f"{base_drive}/jj.csv"
},
"Cyber_Bullying": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Cyber_Bullying__Stalking__Sexting_messages_20241027_192454.csv",
"output": f"{base_drive}/jj.csv"
},
"Profile_Hacking": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Profile_Hacking_Identity_Theft_messages_20241027_192454.csv",
"output": f"{base_drive}/jj.csv"
},
"Cheating_Impersonation": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Cheating_by_Impersonation_messages_20241027_192454.csv",
"output": f"{base_drive}/jj.csv"
},
"Fake_Profile": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_FakeImpersonating_Profile_messages_20241028_062409.csv",
"output": f"{base_drive}/jj.csv"
},
"Provocative_Speech": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Provocative_Speech_for_unlawful_acts_messages_20241027_110606.csv",
"output": f"{base_drive}/jj.csv"
},
"Matrimonial_Fraud": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_Online_Matrimonial_Fraud_messages_20241027_125715.csv",
"output": f"{base_drive}/jj.csv"
},
"Email_Phishing": {
"input": f"{base_drive}/subcategory_messages/Online_and_Social_Media_Related_Crime/converted_EMail_Phishing_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Intimidating_Email": {
"input": f"{base_drive}/converted_iIntimidating_Email_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Call_Vishing": {
"input": f"{base_drive}/subcategory_messages/Online_Financial_Fraud/converted_Fraud_CallVishing_messages_20241028_105333.csv",
"output": f"{base_drive}/jj.csv"
},
"Business_Email_Compromise": {
"input": f"{base_drive}/subcategory_messages/Online_Financial_Fraud/converted_Business_Email_CompromiseEmail_Takeover_messages_20241027_110606.csv",
"output": f"{base_drive}/jj.csv"
},
"Demat_Fraud": {
"input": f"{base_drive}/subcategory_messages/Online_Financial_Fraud/converted_DematDepository_Fraud_messages_20241027_110606.csv",
"output": f"{base_drive}/jj.csv"
},
"Online_Gambling": {
"input": f"{base_drive}/category_messages/converted_Online_Gambling__Betting_messages_20241028_070304.csv",
"output": f"{base_drive}/jj.csv"
},
"Data_Breach": {
"input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Data_Breach_Theft_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"DDOS_Attacks": {
"input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Denial_of_Service_(DoS)_Distributed_Denial_of_Service_(DDOS)_attacks_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Malware_Attack": {
"input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Malware_Attack_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Hacking_Defacement": {
"input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Hacking_Defacement_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"SQL_Injection": {
"input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_SQL_Injection_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Ransomware_Attack": {
"input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Ransomware_Attack_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Source_Tampering": {
"input": f"{base_drive}/subcategory_messages/Cyber_Attack__Dependent_Crimes/converted_Tampering_with_computer_source_documents_messages_20241028_070304.csv",
"output": f"{base_drive}/jj.csv"
},
"Cryptocurrency_Fraud": {
"input": f"{base_drive}/subcategory_messages/Cryptocurrency_Crime/converted_Cryptocurrency_Fraud_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Email_Hacking": {
"input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Email_Hacking_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Unauthorised_Access": {
"input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Unauthorised_AccessData_Breach_messages_20241028_143135.csv",
"output": f"{base_drive}/jj.csv"
},
"Website_Defacement": {
"input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Website_DefacementHacking_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Computer_Damage": {
"input": f"{base_drive}/subcategory_messages/Hacking__Damage_to_computercomputer_system_etc/converted_Damage_to_computer_computer_systems_etc_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Cyber_Terrorism": {
"input": f"{base_drive}/subcategory_messages/Cyber_Terrorism/converted_Cyber_Terrorism_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Online_Trafficking": {
"input": f"{base_drive}/subcategory_messages/Online_Cyber_Trafficking/converted_Online_Trafficking_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Ransomware": {
"input": f"{base_drive}/subcategory_messages/Ransomware/converted_Ransomware_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
},
"Against_Sovereignty": {
"input": f"{base_drive}/subcategory_messages/Report_Unlawful_Content/converted_Against_Interest_of_sovereignty_or_integrity_of_India_messages_20241027_130322.csv",
"output": f"{base_drive}/jj.csv"
}
}
def process_file(input_path, output_path):
"""Process a single file and update the output CSV"""
try:
logging.info(f"\nProcessing file: {input_path}")
# Read input file with converted messages
input_df = pd.read_csv(input_path)
logging.info(f"Input file loaded: {len(input_df)} rows")
# Check if output file exists
if os.path.exists(output_path):
output_df = pd.read_csv(output_path)
logging.info(f"Existing output file loaded: {len(output_df)} rows")
else:
# Create new output file with only required columns
output_df = pd.DataFrame(columns=['v1', 'v2'])
logging.info("Created new output file")
# Track statistics
stats = {
'total_processed': 0,
'new_entries': 0,
'updates': 0,
'start_time': time.time()
}
# Process each row
with tqdm(total=len(input_df), desc="Processing messages") as pbar:
for _, row in input_df.iterrows():
try:
# Create new entry with only v1 and v2
new_row = {
'v1': 'ham', # Set v1 as 'ham'
'v2': row['converted_message'] # Get converted message from input
}
output_df = pd.concat([output_df, pd.DataFrame([new_row])], ignore_index=True)
stats['new_entries'] += 1
stats['total_processed'] += 1
except Exception as e:
logging.error(f"Error processing row: {e}")
continue
pbar.update(1)
# Save periodically
if stats['total_processed'] % 100 == 0:
output_df.to_csv(output_path, index=False)
logging.info(f"Periodic save: {stats['total_processed']} messages processed")
# Final save
output_df.to_csv(output_path, index=False)
# Calculate statistics
processing_time = time.time() - stats['start_time']
avg_time = processing_time / max(stats['total_processed'], 1) # Avoid division by zero
logging.info(f"""
Processing Complete:
- Total Processed: {stats['total_processed']}
- New Entries: {stats['new_entries']}
- Updates: {stats['updates']}
- Processing Time: {processing_time:.2f} seconds
- Average Time per Message: {avg_time:.2f} seconds
Output File: {output_path}
""")
return stats
except Exception as e:
logging.error(f"Error processing file {input_path}: {e}")
raise
def generate_report(file_stats, timestamp):
"""Generate processing report"""
report_dir = 'reports'
os.makedirs(report_dir, exist_ok=True)
report_path = f"{report_dir}/processing_report_{timestamp}.txt"
with open(report_path, 'w') as f:
f.write(f"""
Processing Report - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
================================================================
Files Processed:
""")
total_messages = 0
total_new = 0
total_updates = 0
total_time = 0
for file_name, stats in file_stats.items():
f.write(f"""
{file_name}:
- Total Processed: {stats['total_processed']}
- New Entries: {stats['new_entries']}
- Updates: {stats['updates']}
- Processing Time: {time.time() - stats['start_time']:.2f} seconds
""")
total_messages += stats['total_processed']
total_new += stats['new_entries']
total_updates += stats['updates']
total_time += time.time() - stats['start_time']
f.write(f"""
================================================================
Summary:
- Total Messages Processed: {total_messages}
- Total New Entries: {total_new}
- Total Updates: {total_updates}
- Total Processing Time: {total_time:.2f} seconds
- Average Time per Message: {total_time/total_messages:.2f} seconds
================================================================
""")
logging.info(f"Report generated: {report_path}")
def main():
timestamp = setup_logging()
logging.info("Starting processing...")
try:
# Mount Google Drive
base_drive = mount_google_drive()
# Get file paths
file_paths = get_file_paths(base_drive)
# Process each file
file_stats = {}
for file_name, paths in file_paths.items():
logging.info(f"\nProcessing {file_name}...")
try:
stats = process_file(paths['input'], paths['output'])
file_stats[file_name] = stats
except Exception as e:
logging.error(f"Error processing {file_name}: {e}")
continue
# Generate report
generate_report(file_stats, timestamp)
logging.info("Processing complete!")
except Exception as e:
logging.error(f"Critical error: {e}")
raise
if __name__ == "__main__":
main() |