Spaces:
Sleeping
Sleeping
File size: 45,820 Bytes
fe2a0f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 |
import gradio as gr
from groq import Groq
import json
import requests
from datetime import datetime
import logging
import os
from typing import Dict, List, Optional
import time
from googlesearch import search
import threading
import queue
import colorama
from colorama import Fore, Style
import random
import pandas as pd
import csv
from PIL import Image
from io import BytesIO
from selenium import webdriver
from selenium.webdriver.common.by import By
import pytesseract
# Initialize colorama for colored console output
colorama.init()
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s | %(levelname)s | %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('agent_chat.log')
]
)
# Initialize Groq client
GROQ_API_KEY = "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"
client = Groq(api_key=GROQ_API_KEY)
def google_search(query: str, num_results: int = 5) -> List[str]:
"""Perform a Google search and return results"""
try:
search_results = []
for result in search(query, stop=num_results):
search_results.append(result)
return search_results
except Exception as e:
logging.error(f"Google search error: {str(e)}")
return []
class ConversationManager:
def __init__(self):
self.markdown_file = "conversation_history.md"
self.text_file = "conversation_history.txt"
self.current_session = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def log_conversation(self, message: str, agent: str, is_task: bool = False):
"""Log conversation to both markdown and text files"""
# Log to markdown file
with open(self.markdown_file, "a", encoding="utf-8") as f:
if not os.path.getsize(self.markdown_file):
f.write(f"# Scamrakshak Team Conversations\n\n")
if is_task:
f.write(f"\n### Task Assignment ({self.current_session})\n")
f.write(f"**From CEO to {agent}**:\n")
f.write(f"```\n{message}\n```\n")
else:
f.write(f"\n### {agent} Response ({self.current_session})\n")
f.write(f"{message}\n")
f.write("\n---\n")
# Log to text file
with open(self.text_file, "a", encoding="utf-8") as f:
if not os.path.getsize(self.text_file):
f.write("=== SCAMRAKSHAK TEAM CONVERSATIONS ===\n\n")
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if is_task:
f.write(f"\n[{timestamp}] TASK ASSIGNMENT\n")
f.write(f"From: CEO\n")
f.write(f"To: {agent}\n")
f.write(f"Task: {message}\n")
else:
f.write(f"\n[{timestamp}] {agent} RESPONSE\n")
f.write(f"{message}\n")
f.write("\n" + "="*50 + "\n")
class Agent:
def __init__(self, name: str, role: str, system_prompt: str, conversation_manager: ConversationManager):
self.name = name
self.role = role
self.system_prompt = system_prompt
self.conversation_manager = conversation_manager
self.conversation_history: List[Dict] = []
self.task_queue = queue.Queue()
self.research_results = {}
self.detection_running = False
self.stop_requested = False
def get_response(self, user_input: str, from_agent: str = None) -> str:
# First check for scam detection commands
scam_detection_response = self.handle_scam_detection(user_input)
if scam_detection_response:
return scam_detection_response
# Continue with normal response processing
try:
# Add context about who is sending the message
sender_context = f"Message from {from_agent}: " if from_agent else ""
# Perform research if needed
research_results = []
if "research" in user_input.lower() or "search" in user_input.lower():
research_results = google_search(user_input)
research_context = "\n\nResearch results:\n" + "\n".join(research_results)
else:
research_context = ""
# Prepare messages including conversation history
messages = [{"role": "system", "content": self.system_prompt}]
messages.extend(self.conversation_history)
messages.append({
"role": "user",
"content": f"{sender_context}{user_input}{research_context}"
})
# Get response from Groq
chat_completion = client.chat.completions.create(
messages=messages,
model="llama-3.2-90b-text-preview",
temperature=0.7,
max_tokens=1000
)
response = chat_completion.choices[0].message.content
# Log the response
self.conversation_manager.log_conversation(
response,
self.name,
is_task=False
)
# Update conversation history
self.conversation_history.append({"role": "user", "content": user_input})
self.conversation_history.append({"role": "assistant", "content": response})
# Keep only last 10 messages to prevent context length issues
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
return f"{self.name}: {response}"
except Exception as e:
logging.error(f"Error getting response from {self.name}: {str(e)}")
return f"Error: Could not get response from {self.name}. Please try again."
def assign_task(self, task: str, from_agent: str):
"""Add a task to the agent's queue"""
self.task_queue.put((task, from_agent))
self.conversation_manager.log_conversation(
task,
self.name,
is_task=True
)
def process_task(self) -> Optional[str]:
"""Process the next task in the queue"""
if not self.task_queue.empty():
task, from_agent = self.task_queue.get()
response = self.get_response(task, from_agent)
return response
return None
def log_communication(self, message: str, from_agent: str = None, to_agent: str = None):
"""Log communication between agents"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if from_agent and to_agent:
print(f"{Fore.YELLOW}[{timestamp}] {Fore.GREEN}{from_agent} β {to_agent}{Fore.WHITE}: {message}{Style.RESET_ALL}")
elif from_agent:
print(f"{Fore.YELLOW}[{timestamp}] {Fore.BLUE}{from_agent}{Fore.WHITE}: {message}{Style.RESET_ALL}")
else:
print(f"{Fore.YELLOW}[{timestamp}]{Fore.WHITE}: {message}{Style.RESET_ALL}")
def handle_scam_detection(self, message: str) -> str:
"""Handle scam detection commands"""
if message.lower() == "scam_status":
try:
cumulative_path = os.path.join('data', 'reports', 'cumulative_analysis.txt')
if not os.path.exists(cumulative_path):
return f"{self.name}: No analysis data available yet. Start detection with 'scam_detect'."
with open(cumulative_path, 'r', encoding='utf-8') as f:
analysis = f.read()
return f"{self.name}: Current Analysis Report:\n\n{analysis}"
except Exception as e:
return f"{self.name}: Error reading analysis data: {str(e)}"
if "scam_detect" in message.lower():
if self.detection_running:
return f"{self.name}: Scam detection is already running. Use 'stop_detect' to stop it."
try:
self.detection_running = True
self.stop_requested = False
self.log_communication("Initializing scam detection process...", self.name)
# Create necessary directories
directories = ['data/images', 'data/texts', 'data/reports']
for directory in directories:
os.makedirs(directory, exist_ok=True)
# Start detection in background
def run_detection():
try:
self.log_communication("Starting image scraping...", self.name)
image_urls = self.scrape_scam_images()
if image_urls and not self.stop_requested:
self.log_communication(f"Found {len(image_urls)} images. Processing...", self.name)
self.process_scam_images(image_urls)
# Clean up images
images_dir = os.path.join('data', 'images')
if os.path.exists(images_dir):
import shutil
shutil.rmtree(images_dir)
os.makedirs(images_dir)
self.detection_running = False
if self.stop_requested:
self.log_communication("Scam detection stopped by user.", self.name)
else:
self.log_communication("Scam detection completed and images cleaned up.", self.name)
except Exception as e:
self.detection_running = False
self.log_communication(f"Error in scam detection: {str(e)}", self.name)
# Start detection in background thread
import threading
detection_thread = threading.Thread(target=run_detection)
detection_thread.start()
return f"{self.name}: I've initiated the scam detection process. Use 'stop_detect' to stop or 'scam_detect status' to check status."
except Exception as e:
self.detection_running = False
return f"{self.name}: Error starting scam detection: {str(e)}"
elif message.lower() == "stop_detect":
if not self.detection_running:
return f"{self.name}: No scam detection process is currently running."
self.stop_requested = True
return f"{self.name}: Stopping scam detection process... This may take a moment to clean up."
elif "scam_detect status" in message.lower():
return self.get_scam_detection_status()
return None
def scrape_scam_images(self):
"""Scrape images from Bing"""
chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument('--headless')
chrome_options.add_argument('--no-sandbox')
chrome_options.add_argument('--disable-dev-shm-usage')
driver = webdriver.Chrome(options=chrome_options)
image_urls = []
try:
search_query = "indian scam sms"
encoded_query = search_query.replace(' ', '+')
driver.get(f"https://www.bing.com/images/search?q={encoded_query}")
self.log_communication("Loading images...", self.name)
time.sleep(3)
for i in range(5):
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2)
self.log_communication(f"Scroll {i+1}/5 completed", self.name)
selectors = [".mimg", ".iusc"]
for selector in selectors:
elements = driver.find_elements(By.CSS_SELECTOR, selector)
for element in elements:
try:
if selector == ".mimg":
url = element.get_attribute('src')
else:
m = element.get_attribute('m')
if m:
m_json = json.loads(m)
url = m_json.get('murl')
else:
continue
if url and url.startswith('http') and url not in image_urls:
image_urls.append(url)
except Exception as e:
self.log_communication(f"Error getting URL: {str(e)}", self.name)
return image_urls
finally:
driver.quit()
def process_scam_images(self, image_urls):
"""Process scraped images with OCR, Groq formatting, prediction, and storage"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
last_report_time = datetime.now()
stats = {
'total_processed': 0,
'scam_count': 0,
'ham_count': 0,
'failed_count': 0
}
try:
self.log_communication(f"Starting to process {len(image_urls)} images...", self.name)
for i, url in enumerate(image_urls, 1):
if self.stop_requested:
self.log_communication("Stopping image processing as requested...", self.name)
break
try:
self.log_communication(f"Processing image {i}/{len(image_urls)}", self.name)
# Download and process image
response = requests.get(url, timeout=10)
img = Image.open(BytesIO(response.content))
# Save image temporarily with proper path tracking
img_filename = f"image_{timestamp}_{i}.png"
img_path = os.path.join('data', 'images', img_filename)
img.save(img_path)
# Extract text using OCR
text = pytesseract.image_to_string(img)
if text.strip():
# Format text using Groq
try:
prompt = f"""
Format the following extracted text from an SMS image.
Keep the original content intact but improve the formatting and remove any OCR artifacts:
{text.strip()}
"""
completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.2-90b-text-preview",
temperature=0.3,
max_tokens=1024
)
formatted_text = completion.choices[0].message.content.strip()
# Send formatted text to prediction API
if formatted_text:
try:
prediction_response = requests.post(
"https://varun324242-sssssss.hf.space/predict",
json={"message": formatted_text},
timeout=30
)
prediction_response.raise_for_status()
prediction = prediction_response.json().get("predicted_result", "unknown")
# Update stats
stats['total_processed'] += 1
if prediction == "scam":
stats['scam_count'] += 1
elif prediction == "ham":
stats['ham_count'] += 1
# Store message with prediction
message_data = [{
'message': formatted_text,
'prediction': prediction,
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}]
self.update_scam_csv(message_data)
self.log_communication(f"Message from image {i} processed and stored (Prediction: {prediction})", self.name)
except Exception as e:
self.log_communication(f"Prediction API error for image {i}: {str(e)}", self.name)
stats['failed_count'] += 1
except Exception as e:
self.log_communication(f"Error formatting text with Groq for image {i}: {str(e)}", self.name)
stats['failed_count'] += 1
# Generate analysis report every 30 seconds
if (datetime.now() - last_report_time).total_seconds() >= 30:
self.generate_analysis_report(stats, is_final=False)
last_report_time = datetime.now()
except Exception as e:
stats['failed_count'] += 1
self.log_communication(f"Error processing image {i}: {str(e)}", self.name)
continue
finally:
# Delete processed image
try:
if os.path.exists(img_path):
os.remove(img_path)
self.log_communication(f"Deleted image: {img_filename}", self.name)
except Exception as e:
self.log_communication(f"Error deleting image {img_filename}: {str(e)}", self.name)
# Generate final analysis report
if not self.stop_requested:
self.generate_analysis_report(stats, is_final=True)
except Exception as e:
self.log_communication(f"Critical error in image processing: {str(e)}", self.name)
finally:
# Clean up images directory
images_dir = os.path.join('data', 'images')
try:
if os.path.exists(images_dir):
import shutil
shutil.rmtree(images_dir)
os.makedirs(images_dir)
self.log_communication("Images directory cleaned successfully", self.name)
except Exception as e:
self.log_communication(f"Error cleaning images directory: {str(e)}", self.name)
def update_scam_csv(self, new_data):
"""Update scam123.csv immediately with new messages"""
csv_path = os.path.join('data', 'scam123.csv')
try:
# Read existing messages
existing_messages = set()
if os.path.exists(csv_path):
with open(csv_path, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
existing_messages = {row['message'] for row in reader}
# Add new messages
messages_added = 0
for item in new_data:
message = item.get('message', '').strip()
if message and message not in existing_messages:
existing_messages.add(message)
messages_added += 1
# Write all messages to CSV
with open(csv_path, 'w', encoding='utf-8', newline='') as f:
writer = csv.DictWriter(f, fieldnames=['message'])
writer.writeheader()
for message in existing_messages:
writer.writerow({'message': message})
# Create backup
backup_path = os.path.join('data', 'backups', f'scam123_backup_{datetime.now().strftime("%Y%m%d_%H%M%S")}.csv')
os.makedirs(os.path.join('data', 'backups'), exist_ok=True)
with open(backup_path, 'w', encoding='utf-8', newline='') as f:
writer = csv.DictWriter(f, fieldnames=['message'])
writer.writeheader()
for message in existing_messages:
writer.writerow({'message': message})
if messages_added > 0:
self.log_communication(f"Added {messages_added} new messages to scam123.csv", self.name)
except Exception as e:
self.log_communication(f"Error updating CSV: {str(e)}", self.name)
def generate_analysis_report(self, stats, is_final=False):
"""Generate cumulative analysis report"""
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join('data', 'reports', f'analysis_report_{timestamp}.txt')
cumulative_path = os.path.join('data', 'reports', 'cumulative_analysis.txt')
# Read previous cumulative stats if exists
cumulative_stats = {
'total_processed': 0,
'scam_count': 0,
'ham_count': 0,
'failed_count': 0,
'last_update': None
}
if os.path.exists(cumulative_path):
with open(cumulative_path, 'r', encoding='utf-8') as f:
for line in f:
if 'Total Messages Processed:' in line:
cumulative_stats['total_processed'] = int(line.split(':')[1].strip())
elif 'Scam Messages Detected:' in line:
cumulative_stats['scam_count'] = int(line.split(':')[1].strip())
elif 'Ham Messages Detected:' in line:
cumulative_stats['ham_count'] = int(line.split(':')[1].strip())
elif 'Failed Processing:' in line:
cumulative_stats['failed_count'] = int(line.split(':')[1].strip())
# Update cumulative stats
cumulative_stats['total_processed'] += stats['total_processed']
cumulative_stats['scam_count'] += stats['scam_count']
cumulative_stats['ham_count'] += stats['ham_count']
cumulative_stats['failed_count'] += stats['failed_count']
cumulative_stats['last_update'] = datetime.now()
# Write current analysis report
with open(report_path, 'w', encoding='utf-8') as f:
f.write(f"Scam Detection Analysis Report\n")
f.write(f"Generated at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"{'=' * 50}\n\n")
f.write("Current Session Statistics:\n")
f.write(f"Total Messages Processed: {stats['total_processed']}\n")
f.write(f"Scam Messages Detected: {stats['scam_count']}\n")
f.write(f"Ham Messages Detected: {stats['ham_count']}\n")
f.write(f"Failed Processing: {stats['failed_count']}\n\n")
f.write("Cumulative Statistics:\n")
f.write(f"Total Messages Processed: {cumulative_stats['total_processed']}\n")
f.write(f"Scam Messages Detected: {cumulative_stats['scam_count']}\n")
f.write(f"Ham Messages Detected: {cumulative_stats['ham_count']}\n")
f.write(f"Failed Processing: {cumulative_stats['failed_count']}\n\n")
if cumulative_stats['total_processed'] > 0:
scam_percentage = (cumulative_stats['scam_count'] / cumulative_stats['total_processed']) * 100
ham_percentage = (cumulative_stats['ham_count'] / cumulative_stats['total_processed']) * 100
f.write("Analysis:\n")
f.write(f"Scam Percentage: {scam_percentage:.2f}%\n")
f.write(f"Ham Percentage: {ham_percentage:.2f}%\n\n")
if is_final:
f.write("\nFinal Status:\n")
f.write("Processing completed successfully\n")
# Update cumulative analysis file
with open(cumulative_path, 'w', encoding='utf-8') as f:
f.write(f"Cumulative Scam Detection Analysis\n")
f.write(f"Last Updated: {cumulative_stats['last_update'].strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"{'=' * 50}\n\n")
f.write(f"Total Messages Processed: {cumulative_stats['total_processed']}\n")
f.write(f"Scam Messages Detected: {cumulative_stats['scam_count']}\n")
f.write(f"Ham Messages Detected: {cumulative_stats['ham_count']}\n")
f.write(f"Failed Processing: {cumulative_stats['failed_count']}\n\n")
if cumulative_stats['total_processed'] > 0:
scam_percentage = (cumulative_stats['scam_count'] / cumulative_stats['total_processed']) * 100
ham_percentage = (cumulative_stats['ham_count'] / cumulative_stats['total_processed']) * 100
f.write("Overall Analysis:\n")
f.write(f"Scam Percentage: {scam_percentage:.2f}%\n")
f.write(f"Ham Percentage: {ham_percentage:.2f}%\n")
self.log_communication(
f"Analysis reports generated:\n"
f"Current: {report_path}\n"
f"Cumulative: {cumulative_path}",
self.name
)
except Exception as e:
self.log_communication(f"Error generating analysis report: {str(e)}", self.name)
def get_scam_detection_status(self) -> str:
"""Get current status of scam detection"""
try:
# Check scam123.csv
csv_file = os.path.join('data', 'scam123.csv')
if not os.path.exists(csv_file):
return f"{self.name}: No scam detection data available yet. Process hasn't started or no messages detected."
try:
# Read CSV and get statistics
with open(csv_file, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
messages = list(reader)
total_messages = len(messages)
status = (
f"{self.name}: Current Scam Detection Status:\n"
f"Total Messages Collected: {total_messages}\n"
)
# Check if process is currently running
images_dir = os.path.join('data', 'images')
if os.path.exists(images_dir) and len(os.listdir(images_dir)) > 0:
status += "\nStatus: RUNNING - Currently processing images..."
else:
status += "\nStatus: IDLE - Waiting for new detection run"
# Add last update time if file exists
if total_messages > 0:
file_modified_time = datetime.fromtimestamp(os.path.getmtime(csv_file))
status += f"\nLast Updated: {file_modified_time.strftime('%Y-%m-%d %H:%M:%S')}"
return status
except Exception as e:
return f"{self.name}: Error reading scam detection data: {str(e)}"
except Exception as e:
return f"{self.name}: Error checking status: {str(e)}"
# Initialize agents with their roles and prompts
ceo_agent = Agent(
name="CEO",
role="Executive",
system_prompt="""You are the CEO of Scamrakshak, a company dedicated to protecting users from digital scams.
You can delegate tasks to the Tech Support and Research teams.
When given a task about technical implementation or research:
1. Break it down into specific sub-tasks
2. Assign appropriate tasks to Tech Support and Research teams
3. Synthesize their responses into a comprehensive plan
4. Provide strategic oversight and direction
Format task assignments as: "TASK FOR [AGENT]: [specific task description]"
""",
conversation_manager=ConversationManager()
)
tech_support_agent = Agent(
name="Tech Support",
role="Support",
system_prompt="""You are Scamrakshak's Technical Support specialist.
When assigned tasks by the CEO:
1. Analyze technical requirements
2. Provide detailed implementation steps
3. Consider security implications
4. Suggest best practices and potential challenges
5. Research technical solutions using available resources
Focus on practical, secure, and efficient solutions.
Always consider Android best practices and security guidelines.
""",
conversation_manager=ConversationManager()
)
researcher_agent = Agent(
name="Researcher",
role="Analyst",
system_prompt="""You are Scamrakshak's Research Analyst specializing in scam trends and prevention.
When assigned tasks by the CEO:
1. Research current trends and solutions
2. Analyze market data and competitor approaches
3. Provide data-backed recommendations
4. Consider regulatory and compliance aspects
5. Identify potential risks and opportunities
Use research results to provide comprehensive analysis.
Focus on actionable insights and industry best practices.
""",
conversation_manager=ConversationManager()
)
class AgentSystem:
def __init__(self):
self.agents = {
"CEO": ceo_agent,
"Tech Support": tech_support_agent,
"Researcher": researcher_agent
}
self.current_agent = "CEO"
self.conversation_log = []
def switch_agent(self, agent_name: str) -> str:
if agent_name in self.agents:
self.current_agent = agent_name
return f"Switched to {agent_name}"
return f"Invalid agent name. Available agents: {', '.join(self.agents.keys())}"
def process_task_chain(self, initial_input: str) -> List[str]:
"""Process a task through multiple agents"""
responses = []
# Log initial request
print(f"\n{Fore.CYAN}=== Starting New Task Chain ==={Style.RESET_ALL}")
self.agents["CEO"].log_communication(initial_input, "User")
# CEO processes initial request
print(f"\n{Fore.CYAN}=== CEO Analyzing Request ==={Style.RESET_ALL}")
ceo_response = self.agents["CEO"].get_response(initial_input)
responses.append(ceo_response)
# Extract and process tasks immediately
tasks_found = False
for line in ceo_response.split('\n'):
if "TASK FOR" in line:
tasks_found = True
target_agent = line.split("TASK FOR")[1].split(":")[0].strip()
task = line.split(":", 1)[1].strip()
if target_agent.upper() == "RESEARCH TEAM":
target_agent = "Researcher" # Map to correct agent name
elif target_agent.upper() == "TECH SUPPORT TEAM":
target_agent = "Tech Support" # Map to correct agent name
if target_agent in self.agents:
print(f"\n{Fore.CYAN}=== {target_agent} Processing Task ==={Style.RESET_ALL}")
# Assign and process task immediately
self.agents[target_agent].assign_task(task, "CEO")
response = self.agents[target_agent].process_task()
if response:
responses.append(response)
print(f"\n{Fore.GREEN}=== {target_agent} Task Complete ==={Style.RESET_ALL}")
if tasks_found:
# CEO synthesizes all responses
print(f"\n{Fore.CYAN}=== CEO Synthesizing All Responses ==={Style.RESET_ALL}")
synthesis_prompt = (
"Based on the research team and tech support findings above, "
"provide a comprehensive summary and strategic recommendations. "
"Include specific action items and next steps."
)
final_response = self.agents["CEO"].get_response(synthesis_prompt)
responses.append(final_response)
else:
print(f"{Fore.RED}No tasks were delegated in the CEO's response{Style.RESET_ALL}")
print(f"\n{Fore.CYAN}=== Task Chain Complete ==={Style.RESET_ALL}\n")
return responses
def get_response(self, user_input: str) -> str:
if "implement" in user_input.lower() or "research" in user_input.lower():
# Process as a task chain
responses = self.process_task_chain(user_input)
return "\n\n".join(responses)
else:
# Normal single-agent response
self.agents[self.current_agent].log_communication(user_input, "User")
response = self.agents[self.current_agent].get_response(user_input)
return response
# Initialize agent system
agent_system = AgentSystem()
def chat_interface(message: str, history: List[List[str]]) -> str:
"""Handle chat interactions and agent responses"""
print(f"\n{Fore.CYAN}=== New User Message ==={Style.RESET_ALL}")
# Check for agent switch command
if message.startswith("/switch"):
try:
_, agent_name = message.split(" ", 1)
response = agent_system.switch_agent(agent_name)
print(f"{Fore.YELLOW}[SYSTEM] {response}{Style.RESET_ALL}")
return response
except ValueError:
error_msg = "Invalid switch command. Use: /switch [CEO|Tech Support|Researcher]"
print(f"{Fore.RED}[ERROR] {error_msg}{Style.RESET_ALL}")
return error_msg
else:
# Get response from current agent
return agent_system.get_response(message)
# Add this new class for team chat
class TeamChat:
def __init__(self, agents: Dict[str, Agent]):
self.agents = agents
self.is_active = False
self.conversation_manager = ConversationManager()
def process_team_message(self, message: str, from_role: str = "Founder") -> List[str]:
"""Process a message in team chat mode"""
responses = []
if from_role == "Founder":
# CEO responds to founder's task
ceo_prompt = f"As CEO, respond briefly to the founder's request: {message}. Keep it under 50 words and professional."
ceo_response = self.agents["CEO"].get_response(ceo_prompt)
responses.append(ceo_response)
# CEO delegates if needed
if "implement" in message.lower() or "research" in message.lower():
delegation_prompt = f"Delegate this task briefly to team members: {message}. Keep each delegation under 30 words."
delegation = self.agents["CEO"].get_response(delegation_prompt)
responses.append(delegation)
# Team members acknowledge
for agent_name in ["Tech Support", "Researcher"]:
ack_prompt = f"Acknowledge the task briefly and professionally. Keep it under 20 words."
ack = self.agents[agent_name].get_response(ack_prompt)
responses.append(ack)
else:
# Normal team member response
response_prompt = f"Respond briefly to the team chat message: {message}. Keep it under 30 words and professional."
response = self.agents[from_role].get_response(response_prompt)
responses.append(response)
return responses
def create_interface():
"""Create and configure the Gradio interface"""
with gr.Blocks(
title="Scamrakshak AI Assistant",
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Arial', sans-serif;
max-width: 1000px;
margin: auto;
}
.agent-status {
padding: 1rem;
margin: 1rem 0;
border-radius: 0.5rem;
background-color: #f8f9fa;
border: 1px solid #dee2e6;
}
.agent-indicator {
display: inline-block;
padding: 0.25rem 0.5rem;
border-radius: 0.25rem;
margin-right: 0.5rem;
font-weight: bold;
}
.ceo-color { background-color: #e3f2fd; color: #1565c0; }
.tech-color { background-color: #f3e5f5; color: #7b1fa2; }
.research-color { background-color: #e8f5e9; color: #2e7d32; }
.chat-message {
padding: 1rem;
margin: 0.5rem;
border-radius: 0.5rem;
border-left: 4px solid;
}
.ceo-message { border-left-color: #1565c0; }
.tech-message { border-left-color: #7b1fa2; }
.research-message { border-left-color: #2e7d32; }
.user-message { border-left-color: #ff9800; }
.task-delegation {
background-color: #fff3e0;
border: 1px solid #ffe0b2;
padding: 0.5rem;
margin: 0.5rem 0;
border-radius: 0.25rem;
}
"""
) as interface:
with gr.Row():
gr.Markdown("""
# π€ Scamrakshak AI Assistant
An advanced AI system with three specialized agents working together to protect you from scams.
""")
# Agent Status Panel
with gr.Row() as agent_status:
with gr.Column(scale=1):
gr.Markdown("""
### Active Agents
""")
with gr.Group(elem_classes="agent-status"):
current_agent = gr.Textbox(
label="Current Active Agent",
value="CEO",
interactive=False,
elem_classes="agent-indicator ceo-color"
)
gr.Markdown("""
#### Available Agents:
- π **CEO** - Strategic oversight and task delegation
- π οΈ **Tech Support** - Technical implementation and security
- π **Researcher** - Trend analysis and market research
Use `/switch [agent]` to change agents
""")
# Main Chat Interface
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Conversation",
height=600,
container=True,
show_label=True,
elem_id="chatbot"
)
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(
label="Your message",
placeholder="Ask a question or use /team to start team chat...",
lines=2,
show_label=True,
container=True
)
with gr.Column(scale=1):
with gr.Row():
send = gr.Button("Send", variant="primary")
clear = gr.Button("Clear", variant="stop")
# Add team chat controls
with gr.Row():
team_chat_active = gr.Checkbox(
label="Team Chat Mode",
value=False,
interactive=True
)
current_role = gr.Dropdown(
choices=["Founder", "CEO", "Tech Support", "Researcher"],
value="Founder",
label="Speaking As",
interactive=True
)
# Message handling functions remain the same
def user_message(message: str, history: List[List[str]], is_team_chat: bool, role: str) -> tuple[List[List[str]], str]:
if message.strip() == "":
return history, ""
if message.startswith("/team"):
is_team_chat = True
return history, ""
if is_team_chat:
# Process team chat message
team_chat = TeamChat(agent_system.agents)
responses = team_chat.process_team_message(message, role)
# Format team chat messages
history.append([
f'<div class="team-chat-message {role.lower()}-message">{role}: {message}</div>',
""
])
for response in responses:
agent = response.split(":")[0]
content = response.split(":", 1)[1]
history.append([
"",
f'<div class="team-chat-message {agent.lower()}-message">{response}</div>'
])
else:
# Normal chat processing
response = chat_interface(message, history)
history.append([
f'<div class="user-message">{message}</div>',
response
])
return history, ""
# Connect interface elements
msg.submit(
user_message,
[msg, chatbot, team_chat_active, current_role],
[chatbot, msg]
)
send.click(
user_message,
[msg, chatbot, team_chat_active, current_role],
[chatbot, msg]
)
clear.click(lambda: ([], ""), None, [chatbot, msg])
# Update current agent display
def update_current_agent(message: str) -> str:
if message.startswith("/switch"):
try:
_, agent_name = message.split(" ", 1)
if agent_name in ["CEO", "Tech Support", "Researcher"]:
return agent_name
except:
pass
return current_agent.value
msg.submit(update_current_agent, [msg], [current_agent])
send.click(update_current_agent, [msg], [current_agent])
# Add Team Chat section
with gr.Tab("Team Chat"):
with gr.Column():
gr.Markdown("""
# π₯ Team Chat Room
Watch the Scamrakshak team have spontaneous work discussions!
""")
team_chat_box = gr.Chatbot(
label="Team Discussion",
height=400
)
start_discussion = gr.Button("Start New Team Discussion", variant="primary")
def trigger_team_discussion() -> List[List[str]]:
team_chat = TeamChat(agent_system.agents)
discussion = team_chat.start_team_discussion()
formatted_discussion = []
for msg in discussion:
agent = msg.split(":")[0]
content = msg.split(":", 1)[1]
formatted_discussion.append([
"",
f'<div class="{agent.lower()}-message">{msg}</div>'
])
return formatted_discussion
start_discussion.click(
trigger_team_discussion,
outputs=[team_chat_box]
)
gr.Markdown("""
### About Team Chat
- Team members spontaneously discuss work-related topics
- Discussions are focused on improving Scamrakshak's services
- Watch how different team members contribute their expertise
- Topics include security, features, market trends, and more
""")
return interface
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.queue() # Enable queuing for better handling of multiple requests
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
show_api=False
) |