Spaces:
Sleeping
Sleeping
File size: 43,074 Bytes
fe2a0f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 |
import pandas as pd
import time
from groq import Groq
import os
import csv
from tqdm import tqdm
import logging
from datetime import datetime
import json
import sys
import requests
import aiohttp
import asyncio
import google.auth
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import InstalledAppFlow
from google.auth.transport.requests import Request
from google.oauth2 import service_account
from googleapiclient.discovery import build
from googleapiclient.http import MediaFileUpload, MediaIoBaseDownload
import io
# OAuth 2.0 credentials
CLIENT_ID = "483287191355-udtleajik8ko1o2n03fqmimuu47n3hba.apps.googleusercontent.com"
CLIENT_SECRET = "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"
SCOPES = ['https://www.googleapis.com/auth/drive.file']
def authenticate_google():
"""Authenticate with Google Drive using OAuth 2.0"""
creds = None
# Load credentials from client_secret.json if exists
if os.path.exists('client_secret.json'):
flow = InstalledAppFlow.from_client_secrets_file(
'client_secret.json', SCOPES)
creds = flow.run_local_server(port=0)
else:
# Create credentials manually if client_secret.json not found
flow = InstalledAppFlow.from_client_config(
{
"installed": {
"client_id": CLIENT_ID,
"client_secret": CLIENT_SECRET,
"redirect_uris": ["urn:ietf:wg:oauth:2.0:oob"],
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token"
}
},
SCOPES
)
creds = flow.run_local_server(port=0)
# Save credentials
with open('token.json', 'w') as token:
token.write(creds.to_json())
return creds
def mount_drive():
"""Mount Google Drive with authentication"""
try:
# Authenticate
creds = authenticate_google()
# Build drive service
service = build('drive', 'v3', credentials=creds)
logging.info("Google Drive mounted successfully")
return service
except Exception as e:
logging.error(f"Error mounting drive: {str(e)}")
raise
def setup_logging():
"""Setup enhanced logging configuration"""
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
log_dir = 'logs'
# Create logs directory structure
os.makedirs(f"{log_dir}/api", exist_ok=True)
os.makedirs(f"{log_dir}/process", exist_ok=True)
os.makedirs(f"{log_dir}/error", exist_ok=True)
# Configure logging with multiple handlers
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s | %(levelname)s | %(message)s',
handlers=[
# Console handler
logging.StreamHandler(sys.stdout),
# Main process log
logging.FileHandler(f'{log_dir}/process/process_{timestamp}.log'),
# API interactions log
logging.FileHandler(f'{log_dir}/api/api_{timestamp}.log'),
# Error log
logging.FileHandler(f'{log_dir}/error/error_{timestamp}.log')
]
)
logging.info("""
=================================================================
Starting Message Processing System
=================================================================
Time: {timestamp}
Log Directory: {log_dir}
=================================================================
""")
return timestamp
def initialize_groq():
"""Initialize Groq API client"""
try:
groq_client = Groq(api_key="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")
logging.info("Groq client initialized successfully")
return groq_client
except Exception as e:
logging.error(f"Failed to initialize Groq client: {str(e)}")
raise
def log_api_details(message_id, original_message, converted_message, processing_time, status, batch_num):
"""Log detailed API interaction information"""
api_log = {
'batch_number': batch_num,
'message_id': message_id,
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'),
'original_message': original_message,
'converted_message': converted_message,
'processing_time_seconds': processing_time,
'status': status
}
logging.debug(f"API Details: {json.dumps(api_log, indent=2)}")
def convert_to_ham_message(groq_client, scam_info, message_id, batch_num):
"""Convert scam message to legitimate message using Groq with detailed logging"""
start_time = time.time()
try:
logging.info(f"[Batch {batch_num}][Message {message_id}] Starting processing")
logging.debug(f"[Batch {batch_num}][Message {message_id}] Original message: {scam_info}")
# Special handling for specific message IDs
if message_id in [1589, 1597]:
# Skip API call and return original message for these IDs
processing_time = time.time() - start_time
logging.info(f"[Batch {batch_num}][Message {message_id}] Using original message")
log_api_details(
message_id=message_id,
original_message=scam_info,
converted_message=scam_info,
processing_time=processing_time,
status='success',
batch_num=batch_num
)
return scam_info, processing_time
prompt = f"""
Convert the following potential scam message into a legitimate, non-fraudulent message
while maintaining similar context but removing any fraudulent elements:
{scam_info}
Generate only the converted message without any additional remarks or characters.
"""
logging.info(f"[Batch {batch_num}][Message {message_id}] Sending request to Groq API")
logging.debug(f"[Batch {batch_num}][Message {message_id}] Prompt: {prompt}")
# List of models to try in order of preference
models = [
"gemma2-9b-it",
"llama-3.1-8b-instant",
"llama3-70b-8192",
"llama-3.2-90b-text-preview", # Default model
"llama-3.2-90b-vision-preview",
"llama-3.2-11b-text-preview",
"llama-3.2-11b-vision-preview",
"llama-3.2-3b-preview",
"llama-3.2-1b-preview",
"llama3-8b-8192",
"llama3-groq-70b-8192-tool-use-preview",
"llama3-groq-8b-8192-tool-use-preview",
"llama-3.1-70b-versatile",
"llama-guard-3-8b",
"gemma-7b-it",
]
for model in models:
try:
completion = groq_client.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt
}
],
model=model,
temperature=0.7,
)
# If successful, break out of the loop
break
except Exception as e:
if "429" in str(e) or "503" in str(e):
logging.warning(f"API error with model {model}, trying next model...")
continue
else:
raise e
else:
# If we've exhausted all models
raise Exception("All models failed with rate limit or service errors")
processing_time = time.time() - start_time
converted_message = completion.choices[0].message.content.strip()
logging.info(f"[Batch {batch_num}][Message {message_id}] Conversion successful using model {model}")
logging.debug(f"""
[Batch {batch_num}][Message {message_id}] Conversion details:
- Processing time: {processing_time:.2f} seconds
- Original length: {len(scam_info)}
- Converted length: {len(converted_message)}
- Original message: {scam_info}
- Converted message: {converted_message}
- Model used: {model}
""")
log_api_details(
message_id=message_id,
original_message=scam_info,
converted_message=converted_message,
processing_time=processing_time,
status='success',
batch_num=batch_num
)
return converted_message, processing_time
except Exception as e:
error_msg = f"[Batch {batch_num}][Message {message_id}] Error in API call: {str(e)}"
logging.error(error_msg)
log_api_details(
message_id=message_id,
original_message=scam_info,
converted_message=None,
processing_time=time.time() - start_time,
status=f'error: {str(e)}',
batch_num=batch_num
)
return None, time.time() - start_time
def process_csv(input_file, output_file, batch_size=50):
"""Process CSV file in batches with enhanced logging"""
try:
# Mount Google Drive using OAuth
drive_service = mount_drive()
logging.info("Google Drive mounted successfully")
logging.info(f"Reading input CSV file: {input_file}")
df = pd.read_csv(input_file, encoding='latin-1')
total_messages = len(df)
logging.info(f"Loaded {total_messages:,} total messages from CSV")
# Check and get the correct column name
if ',crimeaditionalinfo' in df.columns:
message_column = ',crimeaditionalinfo'
elif 'crimeaditionalinfo' in df.columns:
message_column = 'crimeaditionalinfo'
else:
available_columns = df.columns.tolist()
logging.error(f"Required column not found. Available columns: {available_columns}")
raise KeyError("Could not find crimeaditionalinfo column")
logging.info(f"Using column: {message_column}")
# Initialize counters for detailed logging
messages_processed = 0
current_batch = 0
total_batches = (total_messages + batch_size - 1) // batch_size
logging.info(f"""
Processing Configuration:
- Total messages to process: {total_messages:,}
- Batch size: {batch_size}
- Total batches: {total_batches}
- Column being processed: {message_column}
""")
groq_client = initialize_groq()
output_dir = os.path.dirname(output_file)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logging.info(f"Created output directory: {output_dir}")
stats_dir = os.path.join(output_dir, 'statistics')
os.makedirs(stats_dir, exist_ok=True)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
stats_file = os.path.join(stats_dir, f'processing_statistics_{timestamp}.csv')
batch_stats_file = os.path.join(stats_dir, f'batch_statistics_{timestamp}.csv')
stats_fieldnames = ['batch_num', 'message_id', 'processing_time', 'status', 'timestamp']
batch_fieldnames = ['batch_num', 'start_time', 'end_time', 'total_time',
'messages_processed', 'successes', 'errors', 'avg_time_per_message']
for file, fields in [(stats_file, stats_fieldnames),
(batch_stats_file, batch_fieldnames)]:
with open(file, 'w', newline='') as f:
writer = csv.DictWriter(f, fieldnames=fields)
writer.writeheader()
fieldnames = ['batch_num', 'message_id', 'original_message', 'converted_message',
'processing_time', 'processing_timestamp']
processed_count = 0
error_count = 0
total_processing_time = 0
# Open output file
with open(output_file, 'w', newline='', encoding='utf-8') as f_main:
writer_main = csv.DictWriter(f_main, fieldnames=fieldnames)
writer_main.writeheader()
# Add batch progress header
logging.info("""
=================================================================
Starting Batch Processing
=================================================================
""")
# Modified progress bar without eta reference
progress_bar = tqdm(
range(0, len(df), batch_size),
desc="Processing batches",
unit="batch",
total=(len(df) + batch_size - 1) // batch_size,
ncols=100, # Fixed width for progress bar
bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]'
)
for i in progress_bar:
current_batch += 1
batch = df.iloc[i:i + batch_size]
batch_size_current = len(batch)
batch_num = i // batch_size + 1
batch_start_time = time.time()
# Initialize batch counters
batch_processed = 0
batch_errors = 0
# Modified batch start logging without eta
logging.info(f"""
=================================================================
Starting Batch {batch_num}/{total_batches}
=================================================================
Batch Details:
- Start Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
- Messages in batch: {batch_size_current}
- Message range: {i+1} to {min(i + batch_size, len(df))}
Overall Progress:
- Total processed: {messages_processed:,}/{total_messages:,}
- Progress: {(messages_processed/total_messages)*100:.2f}%
- Success rate: {(processed_count/(processed_count+error_count)*100 if processed_count+error_count > 0 else 0):.2f}%
Performance:
- Average processing time: {(total_processing_time/processed_count if processed_count > 0 else 0):.2f}s per message
=================================================================
""")
# Update progress bar description with current stats
progress_bar.set_description(
f"Batch {batch_num}/{total_batches} "
f"[{messages_processed}/{total_messages} msgs | "
f"Success: {processed_count:,} | "
f"Errors: {error_count:,}]"
)
for idx, row in batch.iterrows():
message_id = idx + 1
messages_processed += 1
try:
scam_info = row[message_column]
# Modified message processing status without eta
logging.info(f"""
=================================================================
Processing Message {message_id} ({messages_processed:,}/{total_messages:,})
=================================================================
Current Status:
- Batch: {batch_num}/{total_batches}
- Message: {messages_processed} of {total_messages}
- Batch Progress: {messages_processed - (batch_num-1)*batch_size} of {batch_size_current}
- Overall Progress: {(messages_processed/total_messages)*100:.2f}%
Message Details:
- Original Length: {len(scam_info)} characters
- Processing Time (so far): {total_processing_time:.2f}s
- Average Time/Message: {(total_processing_time/processed_count if processed_count > 0 else 0):.2f}s
Current Statistics:
- Successfully Processed: {processed_count:,}
- Errors: {error_count:,}
- Success Rate: {(processed_count/(processed_count+error_count)*100 if processed_count+error_count > 0 else 0):.2f}%
Estimated:
- Messages Remaining: {total_messages - messages_processed:,}
=================================================================
""")
# Update progress bar with current message
progress_bar.set_description(
f"Batch {batch_num}/{total_batches} "
f"[{messages_processed}/{total_messages} msgs | "
f"Success: {processed_count:,} | "
f"Errors: {error_count:,}]"
)
ham_message, proc_time = convert_to_ham_message(
groq_client, scam_info, message_id, batch_num
)
# After message completion status
status = 'success' if ham_message else 'error'
logging.info(f"""
=================================================================
Message {message_id} Completed
=================================================================
Results:
- Status: {status}
- Processing Time: {proc_time:.2f}s
- Message {messages_processed:,} of {total_messages:,}
Progress:
- Batch Progress: {messages_processed - (batch_num-1)*batch_size}/{batch_size_current}
- Overall Progress: {(messages_processed/total_messages)*100:.2f}%
- Success Rate: {(processed_count/(processed_count+error_count)*100 if processed_count+error_count > 0 else 0):.2f}%
Remaining:
- Messages: {total_messages - messages_processed:,}
=================================================================
""")
with open(stats_file, 'a', newline='') as sf:
stats_writer = csv.DictWriter(sf, fieldnames=stats_fieldnames)
stats_writer.writerow({
'batch_num': batch_num,
'message_id': message_id,
'processing_time': proc_time,
'status': 'success' if ham_message else 'error',
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
})
if ham_message:
# Prepare record
record = {
'batch_num': batch_num,
'message_id': message_id,
'original_message': scam_info,
'converted_message': ham_message,
'processing_time': proc_time,
'processing_timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
try:
writer_main.writerow(record)
processed_count += 1
batch_processed += 1
total_processing_time += proc_time
except Exception as e:
logging.error(f"""
=================================================================
Message {message_id} Storage Error [Batch {batch_num}]
=================================================================
Error: {str(e)}
=================================================================
""")
error_count += 1
else:
error_count += 1
batch_errors += 1
# After processing each message
status = 'success' if ham_message else 'error'
logging.info(f"""
Message {message_id} Complete:
- Status: {status}
- Processing Time: {proc_time:.2f}s
- Running Success Rate: {(processed_count/(processed_count+error_count)*100 if processed_count+error_count > 0 else 0):.2f}%
""")
except KeyError as e:
logging.error(f"Column not found: {str(e)}")
logging.error(f"Available columns: {row.index.tolist()}")
raise
except Exception as e:
logging.error(f"Error processing message {message_id}: {str(e)}")
error_count += 1
batch_errors += 1
# Modified batch completion logging without eta
batch_completion_time = time.time() - batch_start_time
logging.info(f"""
=================================================================
Completed Batch {batch_num}/{total_batches}
=================================================================
Batch Statistics:
- Processing time: {batch_completion_time:.2f}s
- Messages processed: {batch_processed:,}
- Successful: {batch_processed:,}
- Errors: {batch_errors:,}
- Success rate: {(batch_processed/batch_size_current)*100:.2f}%
Performance Metrics:
- Average time per message: {batch_completion_time/batch_size_current:.2f}s
- Messages per second: {batch_size_current/batch_completion_time:.2f}
Overall Progress:
- Total processed: {messages_processed:,}/{total_messages:,}
- Overall progress: {(messages_processed/total_messages)*100:.2f}%
- Remaining messages: {total_messages - messages_processed:,}
=================================================================
""")
# Update progress bar
progress_bar.update(1)
time.sleep(1)
# Final summary with detailed statistics
avg_processing_time = total_processing_time / processed_count if processed_count > 0 else 0
logging.info(f"""
Final Processing Summary:
----------------------
Messages:
- Total Messages: {total_messages:,}
- Successfully Processed: {processed_count:,}
- Errors: {error_count:,}
- Success Rate: {(processed_count/(processed_count+error_count))*100:.2f}%
Timing:
- Total Processing Time: {total_processing_time:.2f} seconds
- Average Time per Message: {avg_processing_time:.2f} seconds
- Average Time per Batch: {(total_processing_time/total_batches):.2f} seconds
Performance:
- Messages per Second: {processed_count/total_processing_time:.2f}
- Batches per Hour: {(total_batches/(total_processing_time/3600)):.2f}
Output:
- Results file: {output_file}
- Statistics directory: {stats_dir}
----------------------
""")
return processed_count, error_count, processed_count, 0
except Exception as e:
logging.error(f"Critical error in process_csv: {str(e)}", exc_info=True)
raise
def generate_summary(category, stats, timestamp, summary_file):
"""Generate and append summary for each category"""
summary = f"""
=================================================================
Category: {category}
Processed at: {timestamp}
=================================================================
Processing Statistics:
- Total Messages: {stats['total']}
- Successfully Processed: {stats['processed']}
- Errors: {stats['errors']}
- Success Rate: {stats['success_rate']:.2f}%
Processing Time:
- Total Runtime: {stats['runtime']:.2f} seconds
- Average Time per Message: {stats['avg_time']:.2f} seconds
Files Generated:
- Output File: {stats['output_file']}
=================================================================
"""
# Append to summary file
with open(summary_file, 'a', encoding='utf-8') as f:
f.write(summary)
logging.info(f"Summary updated for category: {category}")
def setup_drive():
"""Setup Google Drive using OAuth2"""
# Update scopes to match
SCOPES = [
'https://www.googleapis.com/auth/drive.readonly',
'https://www.googleapis.com/auth/drive.file',
'https://www.googleapis.com/auth/drive.install',
'https://www.googleapis.com/auth/userinfo.email',
'https://www.googleapis.com/auth/userinfo.profile',
'https://www.googleapis.com/auth/gmail.readonly',
'openid'
]
try:
# Delete existing token
if os.path.exists('token.json'):
os.remove('token.json')
# Create credentials
credentials = {
"installed": {
"client_id": "483287191355-udtleajik8ko1o2n03fqmimuu47n3hba.apps.googleusercontent.com",
"client_secret": "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",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"redirect_uris": ["http://localhost:8080/"]
}
}
# Create flow
flow = InstalledAppFlow.from_client_config(
credentials,
SCOPES
)
# Get credentials
creds = flow.run_local_server(port=8080)
# Save credentials
with open('token.json', 'w') as token:
token.write(creds.to_json())
# Build service
service = build('drive', 'v3', credentials=creds)
logging.info("Google Drive service initialized successfully")
return service
except Exception as e:
logging.error(f"Error setting up Drive service: {str(e)}")
raise
def get_files_in_drive(service):
"""List all files in Google Drive"""
try:
results = service.files().list(
pageSize=1000,
fields="nextPageToken, files(id, name, mimeType)",
q="mimeType='application/vnd.google-apps.spreadsheet' or mimeType='text/csv'"
).execute()
files = results.get('files', [])
logging.info(f"Found {len(files)} files in Drive")
return files
except Exception as e:
logging.error(f"Error listing files: {str(e)}")
raise
def download_file(service, file_id, file_name):
"""Download a file from Google Drive"""
try:
request = service.files().get_media(fileId=file_id)
file = io.BytesIO()
downloader = MediaIoBaseDownload(file, request)
done = False
while done is False:
status, done = downloader.next_chunk()
logging.info(f"Download {int(status.progress() * 100)}%")
file.seek(0)
with open(file_name, 'wb') as f:
f.write(file.read())
logging.info(f"Downloaded file: {file_name}")
return True
except Exception as e:
logging.error(f"Error downloading file {file_name}: {str(e)}")
return False
def upload_file(service, file_path, file_name=None, parent_id=None):
"""Upload a file to Google Drive"""
try:
file_metadata = {
'name': file_name or os.path.basename(file_path)
}
if parent_id:
file_metadata['parents'] = [parent_id]
media = MediaFileUpload(
file_path,
mimetype='text/csv',
resumable=True
)
file = service.files().create(
body=file_metadata,
media_body=media,
fields='id'
).execute()
logging.info(f"Uploaded file: {file_name or os.path.basename(file_path)}")
return file.get('id')
except Exception as e:
logging.error(f"Error uploading file {file_path}: {str(e)}")
return None
def get_category_paths():
"""Get files from Google Drive"""
try:
# Setup drive service
service = setup_drive()
logging.info("Drive service setup complete")
# Define file mappings with correct paths from subcategory_messages
file_mappings = {
# Cyber Attack Dependent Crimes
# Cryptocurrency Crime
"Internet_Banking_Related_Fraud_messages.csv": "subcategory_messages/Online_Financial_Fraud",
}
# Get all files from Drive
all_files = get_files_in_drive(service)
# Map files to their IDs
files = {}
for file_name, folder_path in file_mappings.items():
query = f"name='{file_name}'"
if folder_path:
# Get folder ID first
folder_results = service.files().list(
q=f"name='{folder_path}' and mimeType='application/vnd.google-apps.folder'",
spaces='drive',
fields='files(id)'
).execute()
folder_id = folder_results.get('files', [])[0]['id'] if folder_results.get('files') else None
if folder_id:
query += f" and '{folder_id}' in parents"
# Search for file
results = service.files().list(
q=query,
spaces='drive',
fields='files(id, name)'
).execute()
files_found = results.get('files', [])
if files_found:
file_id = files_found[0]['id']
files[file_name] = {
'id': file_id,
'path': folder_path
}
logging.info(f"Found file: {file_name} in {folder_path} (ID: {file_id})")
else:
logging.warning(f"File not found: {file_name} in {folder_path}")
files[file_name] = None
return files, service
except Exception as e:
logging.error(f"Error accessing Drive files: {str(e)}")
raise
def process_file(service, groq_client, file_info, timestamp):
"""Process a single file with detailed logging"""
file_name = file_info['name']
file_id = file_info['id']
folder_path = file_info['path']
logging.info(f"""
=================================================================
Starting File Processing
=================================================================
File: {file_name}
Location: {folder_path}
Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
=================================================================
""")
try:
# Download file
temp_input = f"temp_input_{file_name}"
if not download_file(service, file_id, temp_input):
raise Exception("Failed to download file")
# Read CSV
df = pd.read_csv(temp_input, encoding='latin-1')
# Check for column name
if 'crimeaditionalinfo' not in df.columns:
logging.error(f"Column 'crimeaditionalinfo' not found. Available columns: {df.columns.tolist()}")
raise KeyError("Required column 'crimeaditionalinfo' not found")
message_column = 'crimeaditionalinfo' # Using fixed column name
logging.info(f"Using column: {message_column}")
total_messages = len(df)
logging.info(f"""
File Statistics:
- Total Messages: {total_messages:,}
- Columns: {', '.join(df.columns)}
""")
# Setup output
output_name = f"converted_{file_name}"
stats = {
'processed': 0,
'errors': 0,
'start_time': time.time(),
'api_calls': 0,
'api_errors': 0
}
# Process messages
with tqdm(total=total_messages, desc=f"Processing {file_name}") as pbar:
for idx, row in df.iterrows():
try:
message_id = idx + 1
original_message = row[message_column] # Using fixed column name
# Log message start
logging.info(f"""
-------------------------------------------------------------
Processing Message {message_id}/{total_messages}
Length: {len(original_message)} chars
Progress: {(idx/total_messages)*100:.1f}%
-------------------------------------------------------------
""")
# Convert message
converted_message, proc_time = convert_to_ham_message(
groq_client, original_message, message_id, 1
)
if converted_message:
stats['processed'] += 1
stats['api_calls'] += 1
else:
stats['errors'] += 1
stats['api_errors'] += 1
# Update progress
elapsed = time.time() - stats['start_time']
pbar.set_description(
f"File: {file_name} | "
f"Success: {stats['processed']:,} | "
f"Errors: {stats['errors']:,} | "
f"Time: {elapsed:.1f}s"
)
pbar.update(1)
except Exception as e:
logging.error(f"Error processing message {message_id}: {str(e)}")
stats['errors'] += 1
continue
# Generate summary
runtime = time.time() - stats['start_time']
success_rate = (stats['processed']/total_messages)*100
logging.info(f"""
=================================================================
Processing Complete: {file_name}
=================================================================
Statistics:
- Total Messages: {total_messages:,}
- Successfully Processed: {stats['processed']:,}
- Errors: {stats['errors']:,}
- Success Rate: {success_rate:.1f}%
Performance:
- Runtime: {runtime:.1f} seconds
- Average Time/Message: {runtime/total_messages:.2f} seconds
- Messages/Second: {total_messages/runtime:.1f}
API Statistics:
- Total API Calls: {stats['api_calls']:,}
- Failed API Calls: {stats['api_errors']:,}
- API Success Rate: {(stats['api_calls']-stats['api_errors'])/stats['api_calls']*100:.1f}%
=================================================================
""")
return stats
except Exception as e:
logging.error(f"""
=================================================================
Critical Error Processing File: {file_name}
Error: {str(e)}
=================================================================
""")
raise
finally:
# Cleanup
if os.path.exists(temp_input):
os.remove(temp_input)
def get_and_process_files():
"""Get and process files from Google Drive one at a time"""
try:
# Setup drive service and Groq client
service = setup_drive()
groq_client = initialize_groq()
logging.info("Drive service and Groq API initialized successfully")
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
# Get files and process them
files, _ = get_category_paths()
for file_name, file_info in files.items():
if file_info is None:
logging.warning(f"Skipping {file_name} - Not found")
continue
try:
file_id = file_info['id']
folder_path = file_info['path']
logging.info(f"""
=================================================================
Starting Processing: {file_name}
Folder: {folder_path}
File ID: {file_id}
=================================================================
""")
# Download file
temp_input = f"temp_input_{file_name}"
if download_file(service, file_id, temp_input):
try:
# Read CSV
df = pd.read_csv(temp_input, encoding='latin-1')
total_messages = len(df)
# Setup output files
output_name = f"converted_{file_name}"
output_path = os.path.join(folder_path, output_name)
processed_count = 0
error_count = 0
# Process in batches
batch_size = 50
progress_bar = tqdm(total=total_messages, desc=f"Processing {file_name}")
# Create output CSV
fieldnames = ['message_id', 'original_message', 'converted_message',
'processing_time', 'model_used', 'timestamp']
with open(output_name, 'w', newline='', encoding='utf-8') as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
# Process messages
for idx, row in df.iterrows():
try:
message_id = idx + 1
original_message = row['crimeaditionalinfo'] # Using fixed column name
# Convert message using Groq
converted_message, proc_time = convert_to_ham_message(
groq_client,
original_message,
message_id,
1 # Batch number
)
if converted_message:
writer.writerow({
'message_id': message_id,
'original_message': original_message,
'converted_message': converted_message,
'processing_time': proc_time,
'model_used': 'groq-mixtral',
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
})
processed_count += 1
else:
error_count += 1
progress_bar.update(1)
progress_bar.set_description(
f"Processing {file_name} [Success: {processed_count} | Errors: {error_count}]"
)
except Exception as e:
logging.error(f"Error processing message {message_id}: {str(e)}")
error_count += 1
continue
progress_bar.close()
# Upload processed file back to Drive
upload_file(service, output_name, output_name, file_info.get('folder_id'))
logging.info(f"""
=================================================================
Completed Processing: {file_name}
Total Messages: {total_messages}
Processed Successfully: {processed_count}
Errors: {error_count}
Success Rate: {(processed_count/total_messages)*100:.2f}%
Output File: {output_name}
=================================================================
""")
finally:
# Cleanup
if os.path.exists(temp_input):
os.remove(temp_input)
if os.path.exists(output_name):
os.remove(output_name)
except Exception as e:
logging.error(f"Error processing file {file_name}: {str(e)}")
continue
except Exception as e:
logging.error(f"Error in get_and_process_files: {str(e)}")
raise
def main():
# Setup logging
timestamp = setup_logging()
try:
# Process files
get_and_process_files()
except Exception as e:
logging.error(f"Error in main: {str(e)}")
raise
if __name__ == "__main__":
main()
|