Spaces:
Sleeping
Sleeping
from torch import Tensor | |
from transformers import AutoTokenizer, AutoModel | |
from ctranslate2 import Translator | |
from typing import Union | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
def average_pool(last_hidden_states: Tensor, | |
attention_mask: Tensor) -> Tensor: | |
last_hidden = last_hidden_states.masked_fill( | |
~attention_mask[..., None].bool(), 0.0) | |
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] | |
# text-ada replacement | |
embeddingTokenizer = AutoTokenizer.from_pretrained( | |
'./multilingual-e5-base') | |
embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base') | |
# chatGpt replacement | |
inferenceTokenizer = AutoTokenizer.from_pretrained( | |
"./fastchat-t5-3b-ct2") | |
inferenceTranslator = Translator( | |
"./fastchat-t5-3b-ct2", compute_type="int8", device="cpu") | |
class EmbeddingRequest(BaseModel): | |
input: Union[str, None] = None | |
class TokensCountRequest(BaseModel): | |
input: Union[str, None] = None | |
class InferenceRequest(BaseModel): | |
input: Union[str, None] = None | |
max_length: Union[int, None] = 0 | |
app = FastAPI() | |
async def root(): | |
return {"message": "Hello World"} | |
async def text_embedding(request: EmbeddingRequest): | |
input = request.input | |
# Process the input data | |
batch_dict = embeddingTokenizer([input], max_length=512, | |
padding=True, truncation=True, return_tensors='pt') | |
outputs = embeddingModel(**batch_dict) | |
embeddings = average_pool(outputs.last_hidden_state, | |
batch_dict['attention_mask']) | |
# create response | |
return { | |
'embedding': embeddings[0].tolist() | |
} | |
async def inference(request: InferenceRequest): | |
input_text = request.input | |
max_length = 256 | |
try: | |
max_length = int(request.max_length) | |
max_length = min(1024, max_length) | |
except: | |
pass | |
# process request | |
input_tokens = inferenceTokenizer.convert_ids_to_tokens( | |
inferenceTokenizer.encode(input_text)) | |
results = inferenceTranslator.translate_batch( | |
[input_tokens], beam_size=1, max_input_length=0, max_decoding_length=max_length, num_hypotheses=1, repetition_penalty=1.3, sampling_topk=40, sampling_temperature=0.7, use_vmap=False) | |
output_tokens = results[0].hypotheses[0] | |
output_text = inferenceTokenizer.decode( | |
inferenceTokenizer.convert_tokens_to_ids(output_tokens)) | |
# create response | |
return { | |
'generated_text': output_text | |
} | |
async def tokens_count(request: TokensCountRequest): | |
input_text = request.input | |
tokens = inferenceTokenizer.convert_ids_to_tokens( | |
inferenceTokenizer.encode(input_text)) | |
# create response | |
return { | |
'tokens': tokens, | |
'total': len(tokens) | |
} | |