Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
from huggingface_hub import InferenceClient | |
from PIL import Image | |
from io import BytesIO | |
# Initialize the Hugging Face client for chat | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Initialize the DiffusionPipeline for image generation | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Check for image generation request | |
if "generate an image" in message.lower(): | |
prompt = message.replace("generate an image", "").strip() | |
image = infer( | |
prompt=prompt, | |
negative_prompt="", | |
seed=0, | |
randomize_seed=True, | |
width=512, | |
height=512, | |
guidance_scale=7.5, | |
num_inference_steps=50 | |
) | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = buffered.getvalue() | |
return "Here is your generated image:", img_str | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Define Gradio Blocks interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Chat and Image Generation") | |
with gr.Row(): | |
with gr.Column(): | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
def process_image_request(prompt): | |
image = infer( | |
prompt=prompt, | |
negative_prompt="", | |
seed=0, | |
randomize_seed=True, | |
width=512, | |
height=512, | |
guidance_scale=7.5, | |
num_inference_steps=50 | |
) | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
return buffered.getvalue() | |
gr.Examples( | |
examples=["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice"], | |
inputs=[gr.Textbox(label="Prompt", placeholder="Enter your prompt")], | |
outputs=[gr.Image()] | |
) | |
demo.queue().launch() | |