Spaces:
Sleeping
Sleeping
File size: 9,864 Bytes
beb0e8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import streamlit as st
import pandas as pd
import requests
from bs4 import BeautifulSoup
import google.generativeai as genai
import os
from io import BytesIO, TextIOWrapper
import PyPDF2
import docx2txt
import csv
from huggingface_hub import InferenceClient
st.title('π AI Playground ')
st.text('Web Scraping with Pandas and Streamlit, Gemini, Mistral, and Phi-3')
Model = st.selectbox("Select your prefered model:", ["GEMINI", "MISTRAL8X", "PHI-3", "Custom Models"])
if Model == "GEMINI":
tkey = st.text_input("Your Token or API key here:", "")
# Button to trigger scraping
# if st.button('Scrape Data'):
# if url:
# if 'https://' not in url:
# url = 'https://' + url
# scraped_data = scrape_data(url)
# paragraph = ' '.join(scraped_data['Text'].dropna())
# st.write(scraped_data)
# st.write(paragraph)
# else:
# st.write('Please enter a valid website URL')
# Set up the model
generation_config = {
"temperature": 0.9,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
},
]
model = genai.GenerativeModel(model_name="gemini-pro",
generation_config=generation_config,
safety_settings=safety_settings)
genai.configure(api_key=tkey)
def gai(inp):
return model.generate_content(inp).text
################################################################################################################
else:
tkey = st.text_input("HuggingFace token here:", "")
if Model == "MISTRAL8X":
mkey= "mistralai/Mixtral-8x7B-Instruct-v0.1"
elif Model == "PHI-3":
mkey = "microsoft/Phi-3-mini-4k-instruct"
else:
mkey = st.text_input("Your HuggingFace Model String here:", "")
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history=[], temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
client = InferenceClient(model= mkey, token=tkey)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
output = output.replace("<s>", "").replace("</s>", "")
yield output
return output
# history = []
# while True:
# user_input = input("You: ")
# if user_input.lower() == "off":
# break
# history.append((user_input, ""))
# for response in generate(user_input, history):
# print("Bot:", response)
def gai(query):
x=''
for response in generate(query):
x+=response
return x
################################################################################################################
# bg image
page_bg_img = """
<style>
[data-testid="stAppViewContainer"] {
background-image: url(
https://cdn.wallpapersafari.com/41/41/vIdSZT.jpg
);
background-size: cover;
}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
inp = st.text_input("Enter a prompt and let AI craft stories, poems, code, and more.", "")
# Function to scrape data
def scrape_data(url):
# Send HTTP request and parse content
response = requests.get(url)
# print(response)
soup = BeautifulSoup(response.content, 'html.parser')
# Scraping logic - use BeautifulSoup to find and extract various types of content
texts = [element.text for element in soup.find_all(['p', 'a', 'img'])]
links = [element.get('href') for element in soup.find_all('a') if element.get('href')]
images = [element.get('src') for element in soup.find_all('img') if element.get('src')]
# Ensure all lists are of the same length by padding the shorter ones with None
max_length = max(len(texts), len(links), len(images))
texts += [None] * (max_length - len(texts))
links += [None] * (max_length - len(links))
images += [None] * (max_length - len(images))
# Create a DataFrame using pandas for texts, links, and images
data = {'Text': texts, 'Links': links, 'Images': images}
df = pd.DataFrame(data)
# return the processed data
return df
# Function to extract text from a PDF file
def extract_text_from_pdf(file_bytes):
pdf_reader = PyPDF2.PdfReader(BytesIO(file_bytes))
num_pages = len(pdf_reader.pages)
text = ""
for page_num in range(num_pages):
page = pdf_reader.pages[page_num]
text += page.extract_text()
return text.replace('\t', ' ').replace('\n', ' ')
# Function to extract text from a TXT file
def extract_text_from_txt(file_bytes):
text = file_bytes.decode('utf-8')
return text
# Function to extract text from a DOCX file
def extract_text_from_docx(file_bytes):
docx = docx2txt.process(BytesIO(file_bytes))
return docx.replace('\t', ' ').replace('\n', ' ')
def extract_text_from_csv(file_bytes, encoding='utf-8'):
# Convert bytes to text using the specified encoding
file_text = file_bytes.decode(encoding)
# Use CSV reader to read the content
csv_reader = csv.reader(TextIOWrapper(BytesIO(file_text.encode(encoding)), encoding=encoding))
# Concatenate all rows and columns into a single text
text = ""
for row in csv_reader:
text += ' '.join(row) + ' '
return text.replace('\t', ' ').replace('\n', ' ')
url_input = st.checkbox("Use website input")
url = ""
if url_input:
# Input for the website URL
url = st.text_input('Enter the website URL (optional): ', '')
file_input = st.checkbox("Use file input")
uploaded_file = None
sp_prompt = ""
prompt_input = st.checkbox("Use special prompt input")
if prompt_input:
sp_prompt = st.selectbox("Special Prompt (Optional):", [
"Prompt A: Explain the following with proper details.",
"Prompt B: Describe the whole thing in a nutshell.",
"Prompt C: How this can be useful for us?"
])
if file_input:
# Add file uploader
st.write("Upload a PDF, TXT, or DOCX file to extract the text.")
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file:
# Get the file extension
file_name, file_extension = os.path.splitext(uploaded_file.name)
if file_extension:
# Extract text based on the file extension
if file_extension == ".pdf":
uploaded_file = extract_text_from_pdf(uploaded_file.getvalue())
elif file_extension == ".txt":
uploaded_file = extract_text_from_txt(uploaded_file.getvalue())
elif file_extension == ".docx":
uploaded_file = extract_text_from_docx(uploaded_file.getvalue())
elif file_extension == ".csv":
uploaded_file = extract_text_from_csv(uploaded_file.getvalue())
else:
st.error("Unsupported file type.")
output = ''
previous_responses = []
if st.button("Generate"):
if tkey == '':
st.error("Need to input Token or API key.")
if url:
if 'https://' not in url:
url = 'https://' + url
scraped_data = scrape_data(url)
paragraph = ' '.join(scraped_data['Text'].dropna())
# st.write(scraped_data)
# st.write(paragraph)
inp = paragraph + ' ' +"Take the given data above, as information and generate a response based on this prompt: " + inp
if sp_prompt:
inp = inp + " " + sp_prompt
if uploaded_file:
inp = inp + " " + uploaded_file
if inp:
# st.write(inp)
output = gai(inp)
st.write(output)
# # Add response to the list of previous_responses
# previous_responses.append(output)
# # Display all previous responses
# st.subheader("Previous Responses:")
# for i, response in enumerate(previous_responses, start=1):
# st.write(f"{i}. {response}")
# Add download button
if output is not None:
# filename = 'Generated_Answer.txt'
# with open(filename, 'w') as f:
# f.write(output)
# Add select box
ofType = 'txt'
#ofType = st.selectbox("Chose an output file type: ", ["TXT", "PY", "HTML"])
st.download_button("Download File", data = output, file_name= f"Generated Answer.{ofType}")
else:
st.error("Please enter a prompt to generate text.")
#st.subheader("[π...Visit my GitHub Profile...π](https://github.com/NafisRayan)")
# streamlit run app.py |