import streamlit as st import pandas as pd import requests from bs4 import BeautifulSoup import google.generativeai as genai import os from io import BytesIO, TextIOWrapper import PyPDF2 import docx2txt import csv from huggingface_hub import InferenceClient st.title('👀 AI Playground ') st.text('Web Scraping with Pandas and Streamlit, Gemini, Mistral, and Phi-3') Model = st.selectbox("Select your prefered model:", ["GEMINI", "MISTRAL8X", "PHI-3", "Custom Models"]) if Model == "GEMINI": tkey = st.text_input("Your Token or API key here:", "") # Button to trigger scraping # if st.button('Scrape Data'): # if url: # if 'https://' not in url: # url = 'https://' + url # scraped_data = scrape_data(url) # paragraph = ' '.join(scraped_data['Text'].dropna()) # st.write(scraped_data) # st.write(paragraph) # else: # st.write('Please enter a valid website URL') # Set up the model generation_config = { "temperature": 0.9, "top_p": 1, "top_k": 1, "max_output_tokens": 2048, } safety_settings = [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE", }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE", }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE", }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE", }, ] model = genai.GenerativeModel(model_name="gemini-pro", generation_config=generation_config, safety_settings=safety_settings) genai.configure(api_key=tkey) def gai(inp): return model.generate_content(inp).text ################################################################################################################ else: tkey = st.text_input("HuggingFace token here:", "") if Model == "MISTRAL8X": mkey= "mistralai/Mixtral-8x7B-Instruct-v0.1" elif Model == "PHI-3": mkey = "microsoft/Phi-3-mini-4k-instruct" else: mkey = st.text_input("Your HuggingFace Model String here:", "") def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history=[], temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) client = InferenceClient(model= mkey, token=tkey) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text output = output.replace("", "").replace("", "") yield output return output # history = [] # while True: # user_input = input("You: ") # if user_input.lower() == "off": # break # history.append((user_input, "")) # for response in generate(user_input, history): # print("Bot:", response) def gai(query): x='' for response in generate(query): x+=response return x ################################################################################################################ # bg image page_bg_img = """ """ st.markdown(page_bg_img, unsafe_allow_html=True) inp = st.text_input("Enter a prompt and let AI craft stories, poems, code, and more.", "") # Function to scrape data def scrape_data(url): # Send HTTP request and parse content response = requests.get(url) # print(response) soup = BeautifulSoup(response.content, 'html.parser') # Scraping logic - use BeautifulSoup to find and extract various types of content texts = [element.text for element in soup.find_all(['p', 'a', 'img'])] links = [element.get('href') for element in soup.find_all('a') if element.get('href')] images = [element.get('src') for element in soup.find_all('img') if element.get('src')] # Ensure all lists are of the same length by padding the shorter ones with None max_length = max(len(texts), len(links), len(images)) texts += [None] * (max_length - len(texts)) links += [None] * (max_length - len(links)) images += [None] * (max_length - len(images)) # Create a DataFrame using pandas for texts, links, and images data = {'Text': texts, 'Links': links, 'Images': images} df = pd.DataFrame(data) # return the processed data return df # Function to extract text from a PDF file def extract_text_from_pdf(file_bytes): pdf_reader = PyPDF2.PdfReader(BytesIO(file_bytes)) num_pages = len(pdf_reader.pages) text = "" for page_num in range(num_pages): page = pdf_reader.pages[page_num] text += page.extract_text() return text.replace('\t', ' ').replace('\n', ' ') # Function to extract text from a TXT file def extract_text_from_txt(file_bytes): text = file_bytes.decode('utf-8') return text # Function to extract text from a DOCX file def extract_text_from_docx(file_bytes): docx = docx2txt.process(BytesIO(file_bytes)) return docx.replace('\t', ' ').replace('\n', ' ') def extract_text_from_csv(file_bytes, encoding='utf-8'): # Convert bytes to text using the specified encoding file_text = file_bytes.decode(encoding) # Use CSV reader to read the content csv_reader = csv.reader(TextIOWrapper(BytesIO(file_text.encode(encoding)), encoding=encoding)) # Concatenate all rows and columns into a single text text = "" for row in csv_reader: text += ' '.join(row) + ' ' return text.replace('\t', ' ').replace('\n', ' ') url_input = st.checkbox("Use website input") url = "" if url_input: # Input for the website URL url = st.text_input('Enter the website URL (optional): ', '') file_input = st.checkbox("Use file input") uploaded_file = None sp_prompt = "" prompt_input = st.checkbox("Use special prompt input") if prompt_input: sp_prompt = st.selectbox("Special Prompt (Optional):", [ "Prompt A: Explain the following with proper details.", "Prompt B: Describe the whole thing in a nutshell.", "Prompt C: How this can be useful for us?" ]) if file_input: # Add file uploader st.write("Upload a PDF, TXT, or DOCX file to extract the text.") uploaded_file = st.file_uploader("Choose a file") if uploaded_file: # Get the file extension file_name, file_extension = os.path.splitext(uploaded_file.name) if file_extension: # Extract text based on the file extension if file_extension == ".pdf": uploaded_file = extract_text_from_pdf(uploaded_file.getvalue()) elif file_extension == ".txt": uploaded_file = extract_text_from_txt(uploaded_file.getvalue()) elif file_extension == ".docx": uploaded_file = extract_text_from_docx(uploaded_file.getvalue()) elif file_extension == ".csv": uploaded_file = extract_text_from_csv(uploaded_file.getvalue()) else: st.error("Unsupported file type.") output = '' previous_responses = [] if st.button("Generate"): if tkey == '': st.error("Need to input Token or API key.") if url: if 'https://' not in url: url = 'https://' + url scraped_data = scrape_data(url) paragraph = ' '.join(scraped_data['Text'].dropna()) # st.write(scraped_data) # st.write(paragraph) inp = paragraph + ' ' +"Take the given data above, as information and generate a response based on this prompt: " + inp if sp_prompt: inp = inp + " " + sp_prompt if uploaded_file: inp = inp + " " + uploaded_file if inp: # st.write(inp) output = gai(inp) st.write(output) # # Add response to the list of previous_responses # previous_responses.append(output) # # Display all previous responses # st.subheader("Previous Responses:") # for i, response in enumerate(previous_responses, start=1): # st.write(f"{i}. {response}") # Add download button if output is not None: # filename = 'Generated_Answer.txt' # with open(filename, 'w') as f: # f.write(output) # Add select box ofType = 'txt' #ofType = st.selectbox("Chose an output file type: ", ["TXT", "PY", "HTML"]) st.download_button("Download File", data = output, file_name= f"Generated Answer.{ofType}") else: st.error("Please enter a prompt to generate text.") #st.subheader("[🔗...Visit my GitHub Profile...🔗](https://github.com/NafisRayan)") # streamlit run app.py