Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import en_ner_bc5cdr_md
|
2 |
import spacy
|
3 |
from spacy import displacy
|
@@ -13,6 +16,23 @@ def listToString(s):
|
|
13 |
str1 = " ; "
|
14 |
return (str1.join(s))
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
### Defining List
|
17 |
lst_chk = ["PHI Masking","Disease & Drug Extraction","Question Answering"]
|
18 |
|
@@ -31,16 +51,10 @@ hom =st.sidebar.radio("Text Predictions",["Home","Text Prediction Models","Feedb
|
|
31 |
|
32 |
### Main Code
|
33 |
if hom == "Home":
|
34 |
-
#colm1 , colm2, colm3, colm4, colm5 = st.columns(5)
|
35 |
-
#with colm5:
|
36 |
-
# st.image("data//Goofy.jpg", width = 100)
|
37 |
|
38 |
col1 , col2 = st.columns([0.8,3])
|
39 |
with col2:
|
40 |
st.title("GOOFY THE ASSIST :male-doctor:")
|
41 |
-
# :male-doctor:, :person_doing_cartwheel:
|
42 |
-
#with col3:
|
43 |
-
#st.write("[Gavs](https://www.gavstech.com/)")
|
44 |
st.caption("")
|
45 |
st.video("https://www.youtube.com/watch?v=q_hfdvmS8As")
|
46 |
|
@@ -76,7 +90,10 @@ if hom == "Text Prediction Models":
|
|
76 |
lst_person = []
|
77 |
lst_gpe = []
|
78 |
|
79 |
-
tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
|
|
|
|
|
|
|
80 |
sentence = Sentence(txt_input1)
|
81 |
tagger.predict(sentence)
|
82 |
|
@@ -128,8 +145,8 @@ if hom == "Text Prediction Models":
|
|
128 |
lst_person = []
|
129 |
lst_gpe = []
|
130 |
|
131 |
-
tagger =
|
132 |
-
sentence = Sentence(
|
133 |
tagger.predict(sentence)
|
134 |
|
135 |
out_txt = txt_input1
|
@@ -188,7 +205,8 @@ if hom == "Text Prediction Models":
|
|
188 |
if st.button("Submit"):
|
189 |
|
190 |
##### Scispacy Model
|
191 |
-
nlp_bc5cdr = en_ner_bc5cdr_md.load()
|
|
|
192 |
doc_nlp_bc5cdr = nlp_bc5cdr(txt_input1)
|
193 |
#displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
|
194 |
lst_disease = []
|
@@ -225,7 +243,8 @@ if hom == "Text Prediction Models":
|
|
225 |
#### Scispacy Model full dataframe
|
226 |
phi_df_full = pd.DataFrame()
|
227 |
for row in df.itertuples():
|
228 |
-
nlp_bc5cdr = en_ner_bc5cdr_md.load()
|
|
|
229 |
doc_nlp_bc5cdr = nlp_bc5cdr(str(row.Medical_Record))
|
230 |
#displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
|
231 |
lst_disease = []
|
@@ -264,19 +283,14 @@ if hom == "Text Prediction Models":
|
|
264 |
qstn = st.selectbox("Select Question",questions,index = 0)
|
265 |
|
266 |
if st.button("Submit"):
|
267 |
-
|
268 |
-
import transformers
|
269 |
-
from transformers import pipeline
|
270 |
-
qa_model = pipeline("question-answering")
|
271 |
qa_op = qa_model(question = qstn, context = context)
|
272 |
-
|
273 |
cnt = 0
|
274 |
for i in qa_op.values():
|
275 |
cnt += 1
|
276 |
if cnt == 4:
|
277 |
op_fin = str(i)
|
278 |
-
|
279 |
-
#st.write("Output",op_fin)
|
280 |
st.success(op_fin)
|
281 |
|
282 |
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
import transformers
|
3 |
+
from transformers import pipeline
|
4 |
import en_ner_bc5cdr_md
|
5 |
import spacy
|
6 |
from spacy import displacy
|
|
|
16 |
str1 = " ; "
|
17 |
return (str1.join(s))
|
18 |
|
19 |
+
|
20 |
+
@st.cache(allow_output_mutation=True)
|
21 |
+
def flair_model(model_name):
|
22 |
+
return SequenceTagger.load(model_name)
|
23 |
+
|
24 |
+
|
25 |
+
@st.cache(allow_output_mutation=True)
|
26 |
+
def scispacy_model():
|
27 |
+
return en_ner_bc5cdr_md.load()
|
28 |
+
|
29 |
+
|
30 |
+
@st.cache(allow_output_mutation=True)
|
31 |
+
def questionna(model_nm):
|
32 |
+
return pipeline(model_nm)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
### Defining List
|
37 |
lst_chk = ["PHI Masking","Disease & Drug Extraction","Question Answering"]
|
38 |
|
|
|
51 |
|
52 |
### Main Code
|
53 |
if hom == "Home":
|
|
|
|
|
|
|
54 |
|
55 |
col1 , col2 = st.columns([0.8,3])
|
56 |
with col2:
|
57 |
st.title("GOOFY THE ASSIST :male-doctor:")
|
|
|
|
|
|
|
58 |
st.caption("")
|
59 |
st.video("https://www.youtube.com/watch?v=q_hfdvmS8As")
|
60 |
|
|
|
90 |
lst_person = []
|
91 |
lst_gpe = []
|
92 |
|
93 |
+
# tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
|
94 |
+
# sentence = Sentence(txt_input1)
|
95 |
+
# tagger.predict(sentence)
|
96 |
+
tagger = flair_model('flair/ner-english-ontonotes-large')
|
97 |
sentence = Sentence(txt_input1)
|
98 |
tagger.predict(sentence)
|
99 |
|
|
|
145 |
lst_person = []
|
146 |
lst_gpe = []
|
147 |
|
148 |
+
tagger = flair_model('flair/ner-english-ontonotes-large')
|
149 |
+
sentence = Sentence(txt_input1)
|
150 |
tagger.predict(sentence)
|
151 |
|
152 |
out_txt = txt_input1
|
|
|
205 |
if st.button("Submit"):
|
206 |
|
207 |
##### Scispacy Model
|
208 |
+
# nlp_bc5cdr = en_ner_bc5cdr_md.load()
|
209 |
+
nlp_bc5cdr = scispacy_model()
|
210 |
doc_nlp_bc5cdr = nlp_bc5cdr(txt_input1)
|
211 |
#displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
|
212 |
lst_disease = []
|
|
|
243 |
#### Scispacy Model full dataframe
|
244 |
phi_df_full = pd.DataFrame()
|
245 |
for row in df.itertuples():
|
246 |
+
# nlp_bc5cdr = en_ner_bc5cdr_md.load()
|
247 |
+
nlp_bc5cdr = scispacy_model()
|
248 |
doc_nlp_bc5cdr = nlp_bc5cdr(str(row.Medical_Record))
|
249 |
#displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
|
250 |
lst_disease = []
|
|
|
283 |
qstn = st.selectbox("Select Question",questions,index = 0)
|
284 |
|
285 |
if st.button("Submit"):
|
286 |
+
qa_model = questionna('question-answering')
|
|
|
|
|
|
|
287 |
qa_op = qa_model(question = qstn, context = context)
|
288 |
+
|
289 |
cnt = 0
|
290 |
for i in qa_op.values():
|
291 |
cnt += 1
|
292 |
if cnt == 4:
|
293 |
op_fin = str(i)
|
|
|
|
|
294 |
st.success(op_fin)
|
295 |
|
296 |
|