vbzvibin commited on
Commit
751d20e
1 Parent(s): c22a4e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -18
app.py CHANGED
@@ -1,3 +1,6 @@
 
 
 
1
  import en_ner_bc5cdr_md
2
  import spacy
3
  from spacy import displacy
@@ -13,6 +16,23 @@ def listToString(s):
13
  str1 = " ; "
14
  return (str1.join(s))
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ### Defining List
17
  lst_chk = ["PHI Masking","Disease & Drug Extraction","Question Answering"]
18
 
@@ -31,16 +51,10 @@ hom =st.sidebar.radio("Text Predictions",["Home","Text Prediction Models","Feedb
31
 
32
  ### Main Code
33
  if hom == "Home":
34
- #colm1 , colm2, colm3, colm4, colm5 = st.columns(5)
35
- #with colm5:
36
- # st.image("data//Goofy.jpg", width = 100)
37
 
38
  col1 , col2 = st.columns([0.8,3])
39
  with col2:
40
  st.title("GOOFY THE ASSIST :male-doctor:")
41
- # :male-doctor:, :person_doing_cartwheel:
42
- #with col3:
43
- #st.write("[Gavs](https://www.gavstech.com/)")
44
  st.caption("")
45
  st.video("https://www.youtube.com/watch?v=q_hfdvmS8As")
46
 
@@ -76,7 +90,10 @@ if hom == "Text Prediction Models":
76
  lst_person = []
77
  lst_gpe = []
78
 
79
- tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
 
 
 
80
  sentence = Sentence(txt_input1)
81
  tagger.predict(sentence)
82
 
@@ -128,8 +145,8 @@ if hom == "Text Prediction Models":
128
  lst_person = []
129
  lst_gpe = []
130
 
131
- tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
132
- sentence = Sentence(str(row.PHI_DESCRIPTION))
133
  tagger.predict(sentence)
134
 
135
  out_txt = txt_input1
@@ -188,7 +205,8 @@ if hom == "Text Prediction Models":
188
  if st.button("Submit"):
189
 
190
  ##### Scispacy Model
191
- nlp_bc5cdr = en_ner_bc5cdr_md.load()
 
192
  doc_nlp_bc5cdr = nlp_bc5cdr(txt_input1)
193
  #displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
194
  lst_disease = []
@@ -225,7 +243,8 @@ if hom == "Text Prediction Models":
225
  #### Scispacy Model full dataframe
226
  phi_df_full = pd.DataFrame()
227
  for row in df.itertuples():
228
- nlp_bc5cdr = en_ner_bc5cdr_md.load()
 
229
  doc_nlp_bc5cdr = nlp_bc5cdr(str(row.Medical_Record))
230
  #displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
231
  lst_disease = []
@@ -264,19 +283,14 @@ if hom == "Text Prediction Models":
264
  qstn = st.selectbox("Select Question",questions,index = 0)
265
 
266
  if st.button("Submit"):
267
- from transformers import AutoTokenizer
268
- import transformers
269
- from transformers import pipeline
270
- qa_model = pipeline("question-answering")
271
  qa_op = qa_model(question = qstn, context = context)
272
-
273
  cnt = 0
274
  for i in qa_op.values():
275
  cnt += 1
276
  if cnt == 4:
277
  op_fin = str(i)
278
-
279
- #st.write("Output",op_fin)
280
  st.success(op_fin)
281
 
282
 
 
1
+ from transformers import AutoTokenizer
2
+ import transformers
3
+ from transformers import pipeline
4
  import en_ner_bc5cdr_md
5
  import spacy
6
  from spacy import displacy
 
16
  str1 = " ; "
17
  return (str1.join(s))
18
 
19
+
20
+ @st.cache(allow_output_mutation=True)
21
+ def flair_model(model_name):
22
+ return SequenceTagger.load(model_name)
23
+
24
+
25
+ @st.cache(allow_output_mutation=True)
26
+ def scispacy_model():
27
+ return en_ner_bc5cdr_md.load()
28
+
29
+
30
+ @st.cache(allow_output_mutation=True)
31
+ def questionna(model_nm):
32
+ return pipeline(model_nm)
33
+
34
+
35
+
36
  ### Defining List
37
  lst_chk = ["PHI Masking","Disease & Drug Extraction","Question Answering"]
38
 
 
51
 
52
  ### Main Code
53
  if hom == "Home":
 
 
 
54
 
55
  col1 , col2 = st.columns([0.8,3])
56
  with col2:
57
  st.title("GOOFY THE ASSIST :male-doctor:")
 
 
 
58
  st.caption("")
59
  st.video("https://www.youtube.com/watch?v=q_hfdvmS8As")
60
 
 
90
  lst_person = []
91
  lst_gpe = []
92
 
93
+ # tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
94
+ # sentence = Sentence(txt_input1)
95
+ # tagger.predict(sentence)
96
+ tagger = flair_model('flair/ner-english-ontonotes-large')
97
  sentence = Sentence(txt_input1)
98
  tagger.predict(sentence)
99
 
 
145
  lst_person = []
146
  lst_gpe = []
147
 
148
+ tagger = flair_model('flair/ner-english-ontonotes-large')
149
+ sentence = Sentence(txt_input1)
150
  tagger.predict(sentence)
151
 
152
  out_txt = txt_input1
 
205
  if st.button("Submit"):
206
 
207
  ##### Scispacy Model
208
+ # nlp_bc5cdr = en_ner_bc5cdr_md.load()
209
+ nlp_bc5cdr = scispacy_model()
210
  doc_nlp_bc5cdr = nlp_bc5cdr(txt_input1)
211
  #displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
212
  lst_disease = []
 
243
  #### Scispacy Model full dataframe
244
  phi_df_full = pd.DataFrame()
245
  for row in df.itertuples():
246
+ # nlp_bc5cdr = en_ner_bc5cdr_md.load()
247
+ nlp_bc5cdr = scispacy_model()
248
  doc_nlp_bc5cdr = nlp_bc5cdr(str(row.Medical_Record))
249
  #displacy_image = displacy.render(doc_nlp_bc5cdr, jupyter=True,style='ent')
250
  lst_disease = []
 
283
  qstn = st.selectbox("Select Question",questions,index = 0)
284
 
285
  if st.button("Submit"):
286
+ qa_model = questionna('question-answering')
 
 
 
287
  qa_op = qa_model(question = qstn, context = context)
288
+
289
  cnt = 0
290
  for i in qa_op.values():
291
  cnt += 1
292
  if cnt == 4:
293
  op_fin = str(i)
 
 
294
  st.success(op_fin)
295
 
296