victor
last push
7b64e42
from fastai.vision.all import *
import gradio as gr
# Define the list of 1st generation Pokémon class names
def get_x(item):
return item['image'] # Access images directly
def get_y(item):
return class_names[item['labels']] # Map label index to class name
# Load the model
learn = load_learner('poke_model.pkl')
# Categories are derived from the vocabulary of the dataloader used during training
categories = learn.dls.vocab # These are the class labels used in the trained model
# Define the function for prediction
def classify_pokemon(img):
pred, idx, probs = learn.predict(img)
return dict(zip(categories, map(float, probs)))
# Gradio interface setup
title = "Pokémon first gen classifier"
description = "Based on the famous scene (Who's that Pokémon) of the Pokémon TV show, this neural network accurately classifies a Pokémon image."
image = gr.Image(type='pil') # Image size should match your training data size (e.g., 128x128)
label = gr.Label()
examples = ['zapdos.jpg']
# Set up Gradio interface
intf = gr.Interface(
fn=classify_pokemon,
inputs=image,
outputs=label,
examples=examples,
title=title,
description=description
)
# Launch the app
intf.launch(inline=False) # share=True allows you to share the interface via a public link