vdmbrsv commited on
Commit
4565078
Β·
verified Β·
1 Parent(s): 0e52f59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -127
app.py CHANGED
@@ -1,8 +1,6 @@
1
  import gradio as gr
2
- import spaces
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
- import math
6
 
7
  # Initialize device
8
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -22,156 +20,101 @@ SENTIMENT_MAP = {
22
  4: "Very Positive"
23
  }
24
 
25
- def split_text(text, max_length=512):
26
- """
27
- Splits the input text into chunks where each chunk has tokens <= max_length.
28
- Splitting is done at sentence boundaries to maintain context.
29
- """
30
- # Simple sentence splitting based on periods. For more accurate splitting, consider using nltk or spacy.
31
- sentences = text.split('. ')
32
- chunks = []
33
- current_chunk = ""
34
-
35
- for sentence in sentences:
36
- # Add the period back if it was removed during splitting
37
- if not sentence.endswith('.'):
38
- sentence += '.'
39
-
40
- # Check if adding the sentence exceeds the max_length
41
- encoded = tokenizer.encode(current_chunk + " " + sentence, truncation=False)
42
- if len(encoded) > max_length:
43
- if current_chunk:
44
- chunks.append(current_chunk.strip())
45
- current_chunk = sentence
46
- else:
47
- # Single sentence longer than max_length, force split
48
- for i in range(0, len(encoded), max_length):
49
- chunk_tokens = encoded[i:i + max_length]
50
- chunk_text = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
51
- chunks.append(chunk_text.strip())
52
- current_chunk = ""
53
- else:
54
- current_chunk += " " + sentence
55
-
56
- if current_chunk:
57
- chunks.append(current_chunk.strip())
58
-
59
- return chunks
60
-
61
- def aggregate_sentiments(all_probabilities, threshold=0.7):
62
- """
63
- Aggregates the sentiment probabilities from all chunks.
64
- Prioritizes extreme sentiments if any chunk has a high confidence in them.
65
- Otherwise, uses weighted voting based on confidence scores.
66
- """
67
- aggregated_probs = torch.tensor(all_probabilities).mean(dim=0).numpy()
68
- aggregated_confidence = torch.tensor(all_probabilities).mean(dim=0).max().item()
69
- predicted_class = aggregated_probs.argmax()
70
- final_sentiment = SENTIMENT_MAP[predicted_class]
71
- final_confidence = aggregated_probs[predicted_class]
72
-
73
- # Check for extreme sentiments with high confidence
74
- for idx, prob in enumerate(aggregated_probs):
75
- if (idx == 0 or idx == 4) and prob > threshold:
76
- final_sentiment = SENTIMENT_MAP[idx]
77
- final_confidence = prob
78
- break
79
-
80
- return final_sentiment, final_confidence, aggregated_probs
81
-
82
- @spaces.GPU
83
  def analyze_sentiment(text, show_probabilities=False):
84
  """
85
- Analyzes the sentiment of the input text. If the text exceeds the token limit,
86
- it splits the text into chunks and aggregates the results intelligently.
87
  """
88
  try:
89
- chunks = split_text(text)
90
- all_probabilities = []
91
- detailed_results = ""
92
-
93
- for idx, chunk in enumerate(chunks, 1):
94
- inputs = tokenizer(chunk, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
95
-
96
- with torch.no_grad():
97
- outputs = model(**inputs)
98
-
99
- probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
100
- predicted_class = probabilities.argmax()
101
- predicted_sentiment = SENTIMENT_MAP[predicted_class]
102
- confidence = probabilities[predicted_class]
103
-
104
- all_probabilities.append(probabilities)
105
-
106
- if show_probabilities:
107
- detailed_results += f"**Chunk {idx}: {predicted_sentiment} ({confidence:.2%})**\n"
108
- for cls, prob in zip(SENTIMENT_MAP.values(), probabilities):
109
- detailed_results += f"{cls}: {prob:.2%}\n"
110
- detailed_results += "\n"
111
- else:
112
- detailed_results += f"**Chunk {idx}: {predicted_sentiment} ({confidence:.2%})**\n"
113
-
114
- # Aggregate results
115
- final_sentiment, final_confidence, aggregated_probs = aggregate_sentiments(all_probabilities)
116
-
117
- result = f"**Overall Sentiment: {final_sentiment}**\nConfidence: {final_confidence:.2%}\n\n"
118
 
119
  if show_probabilities:
120
- result += "### Detailed Analysis:\n" + detailed_results
121
- result += "### Aggregated Probabilities:\n"
122
- for cls, prob in zip(SENTIMENT_MAP.values(), aggregated_probs):
123
- result += f"{cls}: {prob:.2%}\n"
124
- else:
125
- result += "### Detailed Analysis:\n" + detailed_results
126
 
127
  return result
128
  except Exception as e:
129
  return f"An error occurred during sentiment analysis: {str(e)}"
130
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  # Create Gradio interface using Blocks for better layout control
132
- with gr.Blocks(theme=gr.themes.Soft()) as demo:
133
- gr.Markdown("# 🎭 Sentiment Analysis Wizard")
134
  gr.Markdown(
135
  """
136
- Discover the emotional tone behind any text with our advanced AI model! This app uses a state-of-the-art language model to analyze the sentiment of your text, classifying it into one of five categories: **Very Negative**, **Negative**, **Neutral**, **Positive**, or **Very Positive**.
 
 
 
 
137
  """
138
  )
139
 
140
  with gr.Row():
141
- with gr.Column():
142
  input_text = gr.Textbox(
143
  lines=10,
144
- placeholder="Enter text for sentiment analysis...",
145
- label="Input Text"
146
- )
147
- show_probs = gr.Checkbox(
148
- label="Show probabilities for each class",
149
- value=False
150
  )
151
- analyze_button = gr.Button("Analyze Sentiment")
152
- with gr.Column():
 
 
 
 
 
 
153
  output = gr.Markdown(label="Result")
154
 
155
- with gr.Accordion("Examples", open=False):
156
  examples = [
157
  ["I absolutely loved this movie! The acting was superb and the plot was engaging.", True],
158
  ["The service at this restaurant was terrible. I'll never go back.", False],
159
  ["The product works as expected. Nothing special, but it gets the job done.", True],
160
  ["I'm somewhat disappointed with my purchase. It's not as good as I hoped.", False],
161
- ["This book changed my life! I couldn't put it down and learned so much.", True],
162
- [
163
- """Discover the emotional tone behind any text with our advanced AI model! This app uses a state-of-the-art language model to analyze the sentiment of your text, classifying it into one of five categories: Very Negative, Negative, Neutral, Positive, or Very Positive.
164
-
165
- Discover the emotional tone behind any text with our advanced AI model! This app uses a state-of-the-art language model to analyze the sentiment of your text, classifying it into one of five categories: Very Negative, Negative, Neutral, Positive, or Very Positive.
166
-
167
- FUCK YOU BITCH""",
168
- True
169
- ]
170
  ]
171
  gr.Examples(
172
  examples=examples,
173
  inputs=[input_text, show_probs],
174
- label="Predefined Examples"
175
  )
176
 
177
  analyze_button.click(
@@ -180,12 +123,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
180
  outputs=output
181
  )
182
 
183
- gr.Markdown(
184
- """
185
- ---
186
- **Developed with ❀️ using Gradio and Transformers by Hugging Face**
187
- """
188
- )
189
 
190
  # Launch the interface
191
- demo.launch()
 
1
  import gradio as gr
 
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
4
 
5
  # Initialize device
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
20
  4: "Very Positive"
21
  }
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  def analyze_sentiment(text, show_probabilities=False):
24
  """
25
+ Analyzes the sentiment of the input text with preprocessing.
 
26
  """
27
  try:
28
+ # Preprocess text - convert to lowercase
29
+ text = text.lower()
30
+
31
+ # Tokenize and prepare input
32
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
33
+
34
+ with torch.no_grad():
35
+ outputs = model(**inputs)
36
+
37
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
38
+ predicted_class = probabilities.argmax()
39
+ predicted_sentiment = SENTIMENT_MAP[predicted_class]
40
+ confidence = probabilities[predicted_class]
41
+
42
+ # Prepare the result with emoji indicators
43
+ sentiment_emojis = {
44
+ "Very Negative": "😑",
45
+ "Negative": "πŸ˜”",
46
+ "Neutral": "😐",
47
+ "Positive": "😊",
48
+ "Very Positive": "🀩"
49
+ }
50
+
51
+ result = f"## {sentiment_emojis[predicted_sentiment]} Overall Sentiment: {predicted_sentiment}\n"
52
+ result += f"### Confidence: {confidence:.2%}\n\n"
 
 
 
 
53
 
54
  if show_probabilities:
55
+ result += "### Detailed Analysis:\n"
56
+ for cls, prob in zip(SENTIMENT_MAP.values(), probabilities):
57
+ emoji = sentiment_emojis[cls]
58
+ result += f"{emoji} {cls}: {prob:.2%}\n"
 
 
59
 
60
  return result
61
  except Exception as e:
62
  return f"An error occurred during sentiment analysis: {str(e)}"
63
 
64
+ # Custom theme
65
+ custom_theme = gr.themes.Soft().set(
66
+ body_background_fill="*radial-gradient(circle at top left, #f3e7e9, #e3eeff)",
67
+ block_background_fill="rgba(255, 255, 255, 0.95)",
68
+ block_border_width="0px",
69
+ block_shadow="*0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1)",
70
+ button_primary_background_fill="*linear-gradient(90deg, #4F46E5, #7C3AED)",
71
+ button_primary_background_fill_hover="*linear-gradient(90deg, #4338CA, #6D28D9)",
72
+ button_primary_text_color="white",
73
+ input_background_fill="white",
74
+ )
75
+
76
  # Create Gradio interface using Blocks for better layout control
77
+ with gr.Blocks(theme=custom_theme) as demo:
 
78
  gr.Markdown(
79
  """
80
+ # 🎭 Sentiment Analysis Wizard
81
+
82
+ <div style='text-align: center; padding: 1rem; background: rgba(255, 255, 255, 0.5); border-radius: 1rem; margin: 1rem 0;'>
83
+ Discover the emotional tone behind any text with our advanced AI model! Let our wizard analyze your text and reveal its true sentiment.
84
+ </div>
85
  """
86
  )
87
 
88
  with gr.Row():
89
+ with gr.Column(scale=2):
90
  input_text = gr.Textbox(
91
  lines=10,
92
+ placeholder="Enter your text here to uncover its emotional essence...",
93
+ label="✍️ Input Text",
94
+ show_label=True
 
 
 
95
  )
96
+ with gr.Row():
97
+ show_probs = gr.Checkbox(
98
+ label="🎯 Show detailed probabilities",
99
+ value=False
100
+ )
101
+ analyze_button = gr.Button("✨ Analyze Sentiment", variant="primary")
102
+
103
+ with gr.Column(scale=1):
104
  output = gr.Markdown(label="Result")
105
 
106
+ with gr.Accordion("πŸ“š Example Texts", open=False):
107
  examples = [
108
  ["I absolutely loved this movie! The acting was superb and the plot was engaging.", True],
109
  ["The service at this restaurant was terrible. I'll never go back.", False],
110
  ["The product works as expected. Nothing special, but it gets the job done.", True],
111
  ["I'm somewhat disappointed with my purchase. It's not as good as I hoped.", False],
112
+ ["This book changed my life! I couldn't put it down and learned so much.", True]
 
 
 
 
 
 
 
 
113
  ]
114
  gr.Examples(
115
  examples=examples,
116
  inputs=[input_text, show_probs],
117
+ label="Try these examples"
118
  )
119
 
120
  analyze_button.click(
 
123
  outputs=output
124
  )
125
 
 
 
 
 
 
 
126
 
127
  # Launch the interface
128
+ demo.launch()