Spaces:
Running
on
Zero
Running
on
Zero
Vadim Borisov
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
model_name = "tabularisai/robust-sentiment-analysis"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
|
10 |
-
# Move model to GPU
|
11 |
-
|
12 |
-
model = model.to(device)
|
13 |
|
14 |
-
|
15 |
def predict_sentiment(text):
|
|
|
16 |
inputs = tokenizer(text.lower(), return_tensors="pt", truncation=True, padding=True, max_length=512)
|
17 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
18 |
|
19 |
with torch.no_grad():
|
20 |
outputs = model(**inputs)
|
@@ -23,31 +28,15 @@ def predict_sentiment(text):
|
|
23 |
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
24 |
|
25 |
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
|
26 |
-
|
27 |
-
|
28 |
-
return sentiment_map[predicted_class], f"{confidence:.2%}"
|
29 |
|
30 |
# Gradio interface
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
fn=gradio_sentiment_analysis,
|
38 |
-
inputs=gr.Textbox(lines=5, label="Enter text for sentiment analysis"),
|
39 |
-
outputs=gr.Textbox(label="Result"),
|
40 |
-
title="Sentiment Analysis",
|
41 |
-
description="Analyze the sentiment of your text using a 5-class sentiment model.",
|
42 |
-
theme="huggingface",
|
43 |
-
examples=[
|
44 |
-
["I absolutely loved this movie! The acting was superb and the plot was engaging."],
|
45 |
-
["The service at this restaurant was terrible. I'll never go back."],
|
46 |
-
["The product works as expected. Nothing special, but it gets the job done."],
|
47 |
-
["I'm somewhat disappointed with my purchase. It's not as good as I hoped."],
|
48 |
-
["This book changed my life! I couldn't put it down and learned so much."]
|
49 |
-
]
|
50 |
)
|
51 |
|
52 |
-
|
53 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
|
6 |
+
# Initialize GPU
|
7 |
+
zero = torch.Tensor([0]).cuda()
|
8 |
+
print(f"Initial device: {zero.device}")
|
9 |
|
10 |
# Load model and tokenizer
|
11 |
model_name = "tabularisai/robust-sentiment-analysis"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
14 |
|
15 |
+
# Move model to GPU
|
16 |
+
model = model.to(zero.device)
|
|
|
17 |
|
18 |
+
@spaces.GPU
|
19 |
def predict_sentiment(text):
|
20 |
+
print(f"Device inside function: {zero.device}")
|
21 |
inputs = tokenizer(text.lower(), return_tensors="pt", truncation=True, padding=True, max_length=512)
|
22 |
+
inputs = {k: v.to(zero.device) for k, v in inputs.items()}
|
23 |
|
24 |
with torch.no_grad():
|
25 |
outputs = model(**inputs)
|
|
|
28 |
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
29 |
|
30 |
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
|
31 |
+
return sentiment_map[predicted_class]
|
|
|
|
|
32 |
|
33 |
# Gradio interface
|
34 |
+
demo = gr.Interface(
|
35 |
+
fn=predict_sentiment,
|
36 |
+
inputs=gr.Textbox(label="Enter your text here"),
|
37 |
+
outputs=gr.Textbox(label="Sentiment"),
|
38 |
+
title="🎭 Sentiment Analysis Wizard",
|
39 |
+
description="Discover the emotional tone behind any text with our advanced AI model!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
+
demo.launch()
|
|