Spaces:
Running
Running
File size: 8,539 Bytes
7f46a81 16848ed 7f46a81 4b73929 16848ed 4b73929 7f46a81 0265ffe 16848ed 0265ffe 907ed81 4949582 907ed81 7f46a81 907ed81 16848ed 7f46a81 907ed81 16848ed 907ed81 0265ffe 4b73929 0a5fe3b 0265ffe 907ed81 0265ffe 907ed81 0265ffe 907ed81 e80161b 16848ed 907ed81 3e51bf6 16848ed 0a5fe3b 0265ffe 907ed81 7f46a81 0265ffe 16848ed 7f46a81 907ed81 7f46a81 0265ffe 7f46a81 0265ffe 7f46a81 907ed81 0265ffe 0a5fe3b 907ed81 0a5fe3b 3e51bf6 2a5b875 0a5fe3b 2a5b875 16848ed 0a5fe3b 16848ed 2a5b875 7f46a81 0265ffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from omegaconf import OmegaConf
from query import VectaraQuery
import os
import requests
import json
import uuid
import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback
from PIL import Image
max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'frs', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}
# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
st.session_state.device_id = str(uuid.uuid4())
headers = {
'Content-Type': 'application/json',
'Accept': '*/*'
}
amp_api_key = os.getenv('AMPLITUDE_TOKEN')
def thumbs_feedback(feedback, **kwargs):
"""
Sends feedback to Amplitude Analytics
"""
data = {
"api_key": amp_api_key,
"events": [{
"device_id": st.session_state.device_id,
"event_type": "provided_feedback",
"event_properties": {
"Space Name": kwargs.get("title", "Unknown Space Name"),
"Demo Type": "chatbot",
"query": kwargs.get("prompt", "No user input"),
"response": kwargs.get("response", "No chat response"),
"feedback": feedback["score"],
"Response Language": st.session_state.language
}
}]
}
response = requests.post('https://api2.amplitude.com/2/httpapi', headers=headers, data=json.dumps(data))
if response.status_code != 200:
print(f"Request failed with status code {response.status_code}. Response Text: {response.text}")
st.session_state.feedback_key += 1
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
def isTrue(x) -> bool:
if isinstance(x, bool):
return x
return x.strip().lower() == 'true'
def launch_bot():
def generate_response(question):
response = vq.submit_query(question, languages[st.session_state.language])
return response
def generate_streaming_response(question):
response = vq.submit_query_streaming(question, languages[st.session_state.language])
return response
def show_example_questions():
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
if selected_example:
st.session_state.ex_prompt = selected_example
st.session_state.first_turn = False
return True
return False
if 'cfg' not in st.session_state:
corpus_keys = str(os.environ['corpus_keys']).split(',')
cfg = OmegaConf.create({
'corpus_keys': corpus_keys,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'source_data_desc': os.environ['source_data_desc'],
'streaming': isTrue(os.environ.get('streaming', False)),
'prompt_name': os.environ.get('prompt_name', None),
'examples': os.environ.get('examples', None),
'language': 'English'
})
st.session_state.cfg = cfg
st.session_state.ex_prompt = None
st.session_state.first_turn = True
st.session_state.language = cfg.language
example_messages = [example.strip() for example in cfg.examples.split(",")]
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
cfg = st.session_state.cfg
vq = st.session_state.vq
st.set_page_config(page_title=cfg.title, layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown(f"## About\n\n"
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n")
cfg.language = st.selectbox('Language:', languages.keys())
if st.session_state.language != cfg.language:
st.session_state.language = cfg.language
print(f"DEBUG: Language changed to {st.session_state.language}")
st.rerun()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n"
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
)
st.markdown("---")
st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
example_container = st.empty()
with example_container:
if show_example_questions():
example_container.empty()
st.rerun()
# select prompt from example question or user provided input
if st.session_state.ex_prompt:
prompt = st.session_state.ex_prompt
else:
prompt = st.chat_input()
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
st.session_state.ex_prompt = None
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
if cfg.streaming:
stream = generate_streaming_response(prompt)
response = st.write_stream(stream)
else:
with st.spinner("Thinking..."):
response = generate_response(prompt)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
# Send query and response to Amplitude Analytics
data = {
"api_key": amp_api_key,
"events": [{
"device_id": st.session_state.device_id,
"event_type": "submitted_query",
"event_properties": {
"Space Name": cfg["title"],
"Demo Type": "chatbot",
"query": st.session_state.messages[-2]["content"],
"response": st.session_state.messages[-1]["content"],
"Response Language": st.session_state.language
}
}]
}
response = requests.post('https://api2.amplitude.com/2/httpapi', headers=headers, data=json.dumps(data))
if response.status_code != 200:
print(f"Amplitude request failed with status code {response.status_code}. Response Text: {response.text}")
st.rerun()
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
kwargs = {"prompt": st.session_state.messages[-2]["content"],
"response": st.session_state.messages[-1]["content"],
"title": cfg["title"]})
if __name__ == "__main__":
launch_bot() |