File size: 4,551 Bytes
7f46a81
 
 
 
 
 
 
907ed81
 
4949582
907ed81
7f46a81
 
907ed81
7f46a81
 
907ed81
 
 
 
7f46a81
907ed81
2a5b875
907ed81
 
2a5b875
907ed81
 
 
 
 
e80161b
 
907ed81
 
3e51bf6
907ed81
 
 
 
7f46a81
 
 
 
 
 
907ed81
7f46a81
 
 
 
 
 
907ed81
7f46a81
 
 
 
907ed81
7f46a81
 
907ed81
 
 
3e51bf6
e80161b
3e51bf6
e80161b
 
3e51bf6
e80161b
907ed81
 
 
 
 
 
3e51bf6
 
 
 
 
 
2a5b875
 
 
e80161b
 
 
 
 
 
3e51bf6
e80161b
 
 
 
 
 
2a5b875
 
 
 
 
 
 
 
 
 
 
 
 
7f46a81
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from omegaconf import OmegaConf
from query import VectaraQuery
import os

import streamlit as st
from PIL import Image

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

def launch_bot():
    def generate_response(question):
        response = vq.submit_query(question)
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question)
        return response

    if 'cfg' not in st.session_state:
        corpus_ids = str(os.environ['corpus_ids']).split(',')
        cfg = OmegaConf.create({
            'customer_id': str(os.environ['customer_id']),
            'corpus_ids': corpus_ids,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'description': os.environ['description'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None),
            'examples': os.environ.get('examples', '')
        })
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.markdown(f"## Welcome to {cfg.title}\n\n"
                    f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )
        st.markdown("---")
        st.image(image, width=250)

    st.markdown(f"<center> <h2> Vectara chat demo: {cfg.title} </h2> </center>", unsafe_allow_html=True)
    st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]

    max_examples = 4
    example_messages = [example.strip() for example in cfg.examples.split(",")]
    example_messages = [em for em in example_messages if len(em)>0][:max_examples]
    if len(example_messages) > 0:
        st.markdown("<h6>Queries To Try:</h6>", unsafe_allow_html=True)
        ex_cols = st.columns(max_examples)
        
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # User-provided prompt
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
        st.session_state.ex_prompt = None
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)

    # Example prompt
    for i, example in enumerate(example_messages):
        button_pressed = False
        with ex_cols[i]:
            if st.button(example):
                st.session_state.ex_prompt = example

        if button_pressed:
            st.session_state.messages.append({"role": "user", "content": prompt})
            with st.chat_message("user"):
                st.write(prompt)
                
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt) 
                response = st.write_stream(stream) 
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message)
    
if __name__ == "__main__":
    launch_bot()