Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load the model and tokenizer from Hugging Face
|
9 |
+
model_name = "bigcode/starcoder" # Use StarCoder for code-related tasks
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Ensure the model runs on CPU for Hugging Face Spaces free tier
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
# Cache to store recent prompts and responses with file-based persistence
|
18 |
+
CACHE_FILE = "cache.json"
|
19 |
+
cache = {}
|
20 |
+
|
21 |
+
# Load cache from file if it exists
|
22 |
+
if os.path.exists(CACHE_FILE):
|
23 |
+
with open(CACHE_FILE, "r") as f:
|
24 |
+
cache = json.load(f)
|
25 |
+
|
26 |
+
def code_assistant(prompt, language):
|
27 |
+
# Input validation
|
28 |
+
if not prompt.strip():
|
29 |
+
return "Error: The input prompt cannot be empty. Please provide a coding question or code snippet."
|
30 |
+
if len(prompt) > 256:
|
31 |
+
return "Error: The input prompt is too long. Please limit it to 256 characters."
|
32 |
+
|
33 |
+
# Check if the prompt is in cache
|
34 |
+
cache_key = (prompt, language)
|
35 |
+
if str(cache_key) in cache:
|
36 |
+
return cache[str(cache_key)]
|
37 |
+
|
38 |
+
# Customize the prompt based on language
|
39 |
+
if language:
|
40 |
+
prompt = f"[{language}] {prompt}" # Indicate the language for context
|
41 |
+
|
42 |
+
# Tokenize the input
|
43 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
44 |
+
|
45 |
+
# Generate response with adjusted parameters for faster responses
|
46 |
+
outputs = model.generate(
|
47 |
+
inputs.input_ids,
|
48 |
+
max_length=128, # Shortened max length for quicker response
|
49 |
+
temperature=0.1, # Lower temperature for more focused output
|
50 |
+
top_p=0.8, # Slightly reduced top_p for quicker sampling
|
51 |
+
do_sample=True
|
52 |
+
)
|
53 |
+
|
54 |
+
# Decode the generated output
|
55 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
+
|
57 |
+
# Store the response in cache (limit cache size to 10 items)
|
58 |
+
if len(cache) >= 10:
|
59 |
+
cache.pop(next(iter(cache))) # Remove the oldest item
|
60 |
+
cache[str(cache_key)] = generated_text
|
61 |
+
|
62 |
+
# Write the updated cache to file
|
63 |
+
with open(CACHE_FILE, "w") as f:
|
64 |
+
json.dump(cache, f)
|
65 |
+
|
66 |
+
return generated_text
|
67 |
+
|
68 |
+
# Set up Gradio interface with a dropdown for programming language selection
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=code_assistant,
|
71 |
+
inputs=[
|
72 |
+
gr.Textbox(lines=5, placeholder="Ask a coding question or paste your code here..."),
|
73 |
+
gr.Dropdown(choices=["Python", "JavaScript", "Java", "C++", "HTML", "CSS", "SQL", "Other"], label="Programming Language")
|
74 |
+
],
|
75 |
+
outputs="text",
|
76 |
+
title="Code Assistant with StarCoder",
|
77 |
+
description="An AI code assistant to help you with coding queries, debugging, and code generation. Specify the programming language for more accurate responses."
|
78 |
+
)
|
79 |
+
|
80 |
+
# Launch the Gradio app
|
81 |
+
iface.launch()
|