|
import numpy as np |
|
|
|
import streamlit as st |
|
|
|
import tools |
|
|
|
|
|
|
|
|
|
all_products = tools.get_products_data() |
|
|
|
description_embeddings = tools.get_description_embeddings() |
|
product_usage_embeddings = tools.get_product_usage_embeddings() |
|
product_composition_embeddings = tools.get_product_composition_embeddings() |
|
|
|
faiss_description_index = tools.get_faiss_description_index() |
|
faiss_product_usage_index = tools.get_faiss_product_usage_index() |
|
faiss_product_composition_index = tools.get_faiss_product_composition_index() |
|
|
|
st.title('My first rec app') |
|
|
|
selectbox = st.sidebar.selectbox( |
|
"What prediction are you want?", |
|
("Get prediction for random product", "Selected product") |
|
) |
|
|
|
if selectbox == "Get prediction for random product": |
|
get_prediction_for_random_product = st.button('Get prediction for random product') |
|
if get_prediction_for_random_product: |
|
random_product = tools.get_random_product() |
|
product_index = random_product.name |
|
product_sku = random_product['sku'] |
|
|
|
with st.container(): |
|
image = tools.get_image_by_sku(product_sku) |
|
st.image( |
|
image, |
|
caption=f"{random_product['dimension17']} {random_product['name']}, {random_product['price']} RUB" |
|
) |
|
st.write(f"Описание: {random_product['description']}") |
|
st.write(f"Применение: {random_product['product_usage']}") |
|
st.write(f"Состав: {random_product['product_composition']}") |
|
|
|
st.title('Recommendations by description') |
|
|
|
distances, indexes = faiss_description_index.search( |
|
np.ascontiguousarray( |
|
description_embeddings |
|
.to_numpy() |
|
.astype('float32')[product_index] |
|
.reshape((1, -1)) |
|
), |
|
10 |
|
) |
|
|
|
|
|
|
|
for col, index_1, index_2 in zip(st.columns(4), range(1, 8, 2), range(2, 9, 2)): |
|
|
|
same = all_products.loc[indexes[0][index_1]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']} - {same['price']} RUB" |
|
) |
|
|
|
same = all_products.loc[indexes[0][index_2]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']}, {same['price']} RUB" |
|
) |
|
|
|
|
|
st.title('Recommendations by product usage') |
|
|
|
distances, indexes = faiss_product_usage_index.search( |
|
np.ascontiguousarray( |
|
product_usage_embeddings |
|
.to_numpy() |
|
.astype('float32')[product_index] |
|
.reshape((1, -1)) |
|
), |
|
10 |
|
) |
|
|
|
for col, index_1, index_2 in zip(st.columns(4), range(1, 8, 2), range(2, 9, 2)): |
|
|
|
same = all_products.loc[indexes[0][index_1]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']} - {same['price']} RUB" |
|
) |
|
|
|
same = all_products.loc[indexes[0][index_2]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']}, {same['price']} RUB" |
|
) |
|
|
|
|
|
st.title('Recommendations by product composition') |
|
|
|
distances, indexes = faiss_product_composition_index.search( |
|
np.ascontiguousarray( |
|
product_composition_embeddings |
|
.to_numpy() |
|
.astype('float32')[product_index] |
|
.reshape((1, -1)) |
|
), |
|
10 |
|
) |
|
|
|
for col, index_1, index_2 in zip(st.columns(4), range(1, 8, 2), range(2, 9, 2)): |
|
|
|
same = all_products.loc[indexes[0][index_1]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']} - {same['price']} RUB" |
|
) |
|
|
|
same = all_products.loc[indexes[0][index_2]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']}, {same['price']} RUB" |
|
) |
|
|
|
if selectbox == 'Selected product': |
|
|
|
categories: list = st.multiselect('Выберете категорию продукта', options=tools.get_category_options()) |
|
|
|
eng_categories = [tools.get_category_data('ru_to_eng', cat) for cat in categories] |
|
|
|
if len(categories) > 0: |
|
|
|
brands = st.multiselect( |
|
'Выберете бренд', |
|
options=list(all_products[all_products['category'].isin(eng_categories)]['brand'].value_counts().index) |
|
) |
|
|
|
if len(brands) > 0: |
|
|
|
change_product = st.button('Change product') |
|
|
|
selected_products = all_products[ |
|
all_products['category'].isin(eng_categories) & all_products['brand'].isin(brands)] |
|
|
|
product = selected_products.loc[np.random.choice(selected_products.index)] |
|
|
|
if change_product: |
|
|
|
product = selected_products.loc[np.random.choice(selected_products.index)] |
|
|
|
|
|
with st.container(): |
|
image = tools.get_image_by_sku(product['sku']) |
|
st.image( |
|
image, |
|
caption=f"{product['dimension17']} {product['name']}, {product['price']} RUB" |
|
) |
|
st.write(f"Описание: {product['description']}") |
|
st.write(f"Применение: {product['product_usage']}") |
|
st.write(f"Состав: {product['product_composition']}") |
|
|
|
|
|
st.title('Recommendations by description') |
|
|
|
distances, indexes = faiss_description_index.search( |
|
np.ascontiguousarray( |
|
description_embeddings |
|
.to_numpy() |
|
.astype('float32')[product.name] |
|
.reshape((1, -1)) |
|
), |
|
10 |
|
) |
|
|
|
for col, index_1, index_2 in zip(st.columns(4), range(1, 8, 2), range(2, 9, 2)): |
|
|
|
same = all_products.loc[indexes[0][index_1]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']} - {same['price']} RUB" |
|
) |
|
|
|
same = all_products.loc[indexes[0][index_2]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']}, {same['price']} RUB" |
|
) |
|
|
|
|
|
st.title('Recommendations by product usage') |
|
|
|
distances, indexes = faiss_product_usage_index.search( |
|
np.ascontiguousarray( |
|
product_usage_embeddings |
|
.to_numpy() |
|
.astype('float32')[product.name] |
|
.reshape((1, -1)) |
|
), |
|
10 |
|
) |
|
|
|
for col, index_1, index_2 in zip(st.columns(4), range(1, 8, 2), range(2, 9, 2)): |
|
|
|
same = all_products.loc[indexes[0][index_1]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']} - {same['price']} RUB" |
|
) |
|
|
|
same = all_products.loc[indexes[0][index_2]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']}, {same['price']} RUB" |
|
) |
|
|
|
|
|
st.title('Recommendations by product composition') |
|
|
|
distances, indexes = faiss_product_composition_index.search( |
|
np.ascontiguousarray( |
|
product_composition_embeddings |
|
.to_numpy() |
|
.astype('float32')[product.name] |
|
.reshape((1, -1)) |
|
), |
|
10 |
|
) |
|
|
|
for col, index_1, index_2 in zip(st.columns(4), range(1, 8, 2), range(2, 9, 2)): |
|
|
|
same = all_products.loc[indexes[0][index_1]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']} - {same['price']} RUB" |
|
) |
|
|
|
same = all_products.loc[indexes[0][index_2]] |
|
image = tools.get_image_by_sku(same['sku']) |
|
col.image( |
|
image, |
|
caption=f"{same['dimension17']} {same['name']}, {same['price']} RUB" |
|
) |
|
|