Spaces:
Running
on
T4
Running
on
T4
File size: 5,166 Bytes
8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 6bc996f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import asyncio
from concurrent.futures import ThreadPoolExecutor
from functools import partial
from fasthtml.common import *
from shad4fast import *
from vespa.application import Vespa
import time
from backend.colpali import (
get_result_from_query,
get_query_embeddings_and_token_map,
add_sim_maps_to_result,
)
from backend.vespa_app import get_vespa_app
from backend.cache import LRUCache
from backend.modelmanager import ModelManager
from frontend.app import Home, Search, SearchBox, SearchResult
from frontend.layout import Layout
import hashlib
highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="")
highlight_js_theme = Script(src="/static/js/highlightjs-theme.js")
highlight_js = HighlightJS(
langs=["python", "javascript", "java", "json", "xml"],
dark="github-dark",
light="github",
)
app, rt = fast_app(
htmlkw={"cls": "h-full"},
pico=False,
hdrs=(
ShadHead(tw_cdn=False, theme_handle=True),
highlight_js,
highlight_js_theme_link,
highlight_js_theme,
),
)
vespa_app: Vespa = get_vespa_app()
result_cache = LRUCache(max_size=20) # Each result can be ~10MB
thread_pool = ThreadPoolExecutor()
def generate_query_id(query):
return hashlib.md5(query.encode("utf-8")).hexdigest()
@rt("/static/{filepath:path}")
def serve_static(filepath: str):
return FileResponse(f"./static/{filepath}")
@rt("/")
def get():
return Layout(Home())
@rt("/search")
def get(request):
# Extract the 'query' and 'ranking' parameters from the URL
query_value = request.query_params.get("query", "").strip()
ranking_value = request.query_params.get("ranking", "nn+colpali")
print("/search: Fetching results for ranking_value:", ranking_value)
# Always render the SearchBox first
if not query_value:
# Show SearchBox and a message for missing query
return Layout(
Div(
SearchBox(query_value=query_value, ranking_value=ranking_value),
Div(
P(
"No query provided. Please enter a query.",
cls="text-center text-muted-foreground",
),
cls="p-10",
),
cls="grid",
)
)
# Show the loading message if a query is provided
return Layout(Search(request)) # Show SearchBox and Loading message initially
@rt("/fetch_results")
async def get(request, query: str, nn: bool = True):
if "hx-request" not in request.headers:
return RedirectResponse("/search")
# Extract ranking option from the request
ranking_value = request.query_params.get("ranking")
print(
f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query + ranking_value)
# Fetch model and processor
manager = ModelManager.get_instance()
model = manager.model
processor = manager.processor
q_embs, token_to_idx = get_query_embeddings_and_token_map(processor, model, query)
start = time.perf_counter()
# Fetch real search results from Vespa
result = await get_result_from_query(
app=vespa_app,
processor=processor,
model=model,
query=query,
q_embs=q_embs,
token_to_idx=token_to_idx,
ranking=ranking_value,
)
end = time.perf_counter()
print(f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds")
# Start generating the similarity map in the background
asyncio.create_task(
generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
)
)
search_results = (
result["root"]["children"]
if "root" in result and "children" in result["root"]
else []
)
return SearchResult(search_results, query_id)
async def generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
):
loop = asyncio.get_event_loop()
sim_map_task = partial(
add_sim_maps_to_result,
result=result,
model=model,
processor=processor,
query=query,
q_embs=q_embs,
token_to_idx=token_to_idx,
)
sim_map_result = await loop.run_in_executor(thread_pool, sim_map_task)
result_cache.set(query_id, sim_map_result)
@app.get("/updated_search_results")
async def updated_search_results(query_id: str):
data = result_cache.get(query_id)
if data is None:
return HTMLResponse(status_code=204)
search_results = (
data["root"]["children"]
if "root" in data and "children" in data["root"]
else []
)
updated_content = SearchResult(results=search_results, query_id=None)
return updated_content
@rt("/app")
def get():
return Layout(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4"))
if __name__ == "__main__":
# ModelManager.get_instance() # Initialize once at startup
serve(port=7860)
|