File size: 13,453 Bytes
8ce4d25
e0b54fb
b7897bb
e0b54fb
 
b7897bb
be59b6e
 
8ce4d25
e0b54fb
8ce4d25
e0b54fb
8ce4d25
 
 
b7897bb
be59b6e
 
b7897bb
3b2eca4
be59b6e
 
b62467a
a0b3781
3b2eca4
b7897bb
3b2eca4
 
 
 
 
 
 
8ce4d25
 
 
 
 
 
 
 
 
 
b7897bb
 
 
 
 
 
 
 
b08a991
 
 
 
 
 
 
 
b7897bb
1f02318
8ce4d25
b7897bb
8ce4d25
 
 
 
 
b7897bb
 
b08a991
 
b7897bb
b08a991
8ce4d25
 
a0b3781
be59b6e
4775a9f
 
 
be59b6e
b7897bb
 
 
 
e0b54fb
 
 
b7897bb
295263a
b7897bb
 
 
 
b62467a
 
b08a991
8ce4d25
 
1f02318
 
 
 
 
 
e0b54fb
 
 
 
 
 
be59b6e
 
8ce4d25
 
 
 
b62467a
8ce4d25
 
 
 
b7897bb
8ce4d25
 
 
 
be59b6e
8ce4d25
be59b6e
 
8ce4d25
 
 
 
 
b7897bb
8ce4d25
b7897bb
 
 
 
 
 
 
8ce4d25
b7897bb
 
8ce4d25
 
300f274
 
 
ad76a25
 
 
 
 
8ce4d25
b7897bb
 
 
e0b54fb
 
b7897bb
 
8ce4d25
 
 
be59b6e
8ce4d25
 
 
be59b6e
 
 
 
 
 
 
4775a9f
ad76a25
 
 
 
 
300f274
4775a9f
1f02318
 
be59b6e
8ce4d25
be59b6e
8ce4d25
a0b3781
be59b6e
 
 
a0b3781
be59b6e
 
4775a9f
 
 
b62467a
 
be59b6e
 
 
 
8ce4d25
 
3b2eca4
 
 
 
 
4775a9f
3b2eca4
 
 
4775a9f
 
 
 
8ce4d25
 
 
 
 
4775a9f
be59b6e
 
e0b54fb
 
 
 
 
 
 
be59b6e
 
 
 
 
 
 
 
 
 
 
 
4775a9f
 
be59b6e
 
 
4775a9f
be59b6e
8ce4d25
3b2eca4
 
 
 
 
 
 
4775a9f
 
3b2eca4
4775a9f
3b2eca4
 
 
4775a9f
3b2eca4
 
 
 
b7897bb
3b2eca4
 
 
8ce4d25
 
0b432c7
b62467a
 
 
 
 
 
 
 
 
 
 
0b432c7
b62467a
0b432c7
 
 
b7897bb
0b432c7
b7897bb
 
 
a0b3781
0b432c7
 
b62467a
 
 
 
b7897bb
b62467a
b7897bb
 
 
 
 
b08a991
 
 
 
 
 
 
 
 
 
 
 
b7897bb
0b432c7
295263a
 
e0b54fb
 
 
b7897bb
0b432c7
295263a
0b432c7
 
 
 
 
 
295263a
 
 
 
 
0b432c7
b7897bb
 
e0b54fb
 
 
 
b7897bb
 
 
 
 
 
 
 
 
 
 
 
 
e0b54fb
b7897bb
 
 
 
 
 
 
 
 
 
 
8ce4d25
 
b7897bb
8ce4d25
 
 
 
6bc996f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import asyncio
import base64
import hashlib
import io
import os
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial

import google.generativeai as genai
from fasthtml.common import *
from PIL import Image
from shad4fast import *
from vespa.application import Vespa

from backend.cache import LRUCache
from backend.colpali import (
    add_sim_maps_to_result,
    get_query_embeddings_and_token_map,
    is_special_token,
)
from backend.modelmanager import ModelManager
from pathlib import Path
from backend.vespa_app import VespaQueryClient
from frontend.app import (
    ChatResult,
    Home,
    Search,
    SearchBox,
    SearchResult,
    SimMapButtonPoll,
    SimMapButtonReady,
)
from frontend.layout import Layout

highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="")
highlight_js_theme = Script(src="/static/js/highlightjs-theme.js")
highlight_js = HighlightJS(
    langs=["python", "javascript", "java", "json", "xml"],
    dark="github-dark",
    light="github",
)

overlayscrollbars_link = Link(
    rel="stylesheet",
    href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css",
    type="text/css",
)
overlayscrollbars_js = Script(
    src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js"
)
awesomplete_link = Link(
    rel="stylesheet",
    href="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.css",
    type="text/css",
)
awesomplete_js = Script(
    src="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.js"
)
sselink = Script(src="https://unpkg.com/htmx-ext-sse@2.2.1/sse.js")

app, rt = fast_app(
    htmlkw={"cls": "grid h-full"},
    pico=False,
    hdrs=(
        highlight_js,
        highlight_js_theme_link,
        highlight_js_theme,
        overlayscrollbars_link,
        overlayscrollbars_js,
        awesomplete_link,
        awesomplete_js,
        sselink,
        ShadHead(tw_cdn=False, theme_handle=True),
    ),
)
vespa_app: Vespa = VespaQueryClient()
result_cache = LRUCache(max_size=20)  # Each result can be ~10MB
task_cache = LRUCache(
    max_size=1000
)  # Map from query_id to boolean value - False if not all results are ready.
thread_pool = ThreadPoolExecutor()
# Gemini config

genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images. 
If the user query can not be interpreted as a question, or if the answer to the query can not be inferred from the images,
answer with the exact phrase "I am sorry, I do not have enough information in the image to answer your question.".
Your response should be HTML formatted, but only simple tags, such as <b>. <p>, <i>, <br> <ul> and <li> are allowed. No HTML tables.
This means that newlines will be replaced with <br> tags, bold text will be enclosed in <b> tags, and so on.
But, you should NOT include backticks (`) or HTML tags in your response.
"""
gemini_model = genai.GenerativeModel(
    "gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)
STATIC_DIR = Path(__file__).parent / "static"
IMG_DIR = STATIC_DIR / "saved"
os.makedirs(IMG_DIR, exist_ok=True)


@app.on_event("startup")
def load_model_on_startup():
    app.manager = ModelManager.get_instance()
    return


@app.on_event("startup")
async def keepalive():
    asyncio.create_task(poll_vespa_keepalive())
    return


def generate_query_id(query):
    return hashlib.md5(query.encode("utf-8")).hexdigest()


@rt("/static/{filepath:path}")
def serve_static(filepath: str):
    return FileResponse(STATIC_DIR / filepath)


@rt("/")
def get():
    return Layout(Main(Home()))


@rt("/search")
def get(request):
    # Extract the 'query' and 'ranking' parameters from the URL
    query_value = request.query_params.get("query", "").strip()
    ranking_value = request.query_params.get("ranking", "nn+colpali")
    print("/search: Fetching results for ranking_value:", ranking_value)

    # Always render the SearchBox first
    if not query_value:
        # Show SearchBox and a message for missing query
        return Layout(
            Main(
                Div(
                    SearchBox(query_value=query_value, ranking_value=ranking_value),
                    Div(
                        P(
                            "No query provided. Please enter a query.",
                            cls="text-center text-muted-foreground",
                        ),
                        cls="p-10",
                    ),
                    cls="grid",
                )
            )
        )
    # Generate a unique query_id based on the query and ranking value
    query_id = generate_query_id(query_value + ranking_value)
    # See if results are already in cache
    # if result_cache.get(query_id) is not None:
    #     print(f"Results for query_id {query_id} already in cache")
    #     result = result_cache.get(query_id)
    #     search_results = get_results_children(result)
    #     return Layout(Search(request, search_results))
    # Show the loading message if a query is provided
    return Layout(
        Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
        Aside(
            ChatResult(query_id=query_id, query=query_value),
            cls="border-t border-l hidden md:block",
        ),
    )  # Show SearchBox and Loading message initially


@rt("/fetch_results")
async def get(request, query: str, nn: bool = True):
    if "hx-request" not in request.headers:
        return RedirectResponse("/search")

    # Extract ranking option from the request
    ranking_value = request.query_params.get("ranking")
    print(
        f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
    )
    # Generate a unique query_id based on the query and ranking value
    query_id = generate_query_id(query + ranking_value)
    # See if results are already in cache
    # if result_cache.get(query_id) is not None:
    #     print(f"Results for query_id {query_id} already in cache")
    #     result = result_cache.get(query_id)
    #     search_results = get_results_children(result)
    #     return SearchResult(search_results, query_id)
    # Run the embedding and query against Vespa app
    task_cache.set(query_id, False)
    model = app.manager.model
    processor = app.manager.processor
    q_embs, token_to_idx = get_query_embeddings_and_token_map(processor, model, query)

    start = time.perf_counter()
    # Fetch real search results from Vespa
    result = await vespa_app.get_result_from_query(
        query=query,
        q_embs=q_embs,
        ranking=ranking_value,
        token_to_idx=token_to_idx,
    )
    end = time.perf_counter()
    print(
        f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds"
    )
    # Add result to cache
    result_cache.set(query_id, result)
    # Start generating the similarity map in the background
    asyncio.create_task(
        generate_similarity_map(
            model, processor, query, q_embs, token_to_idx, result, query_id
        )
    )
    fields_to_add = [
        f"sim_map_{token}"
        for token in token_to_idx.keys()
        if not is_special_token(token)
    ]
    search_results = get_results_children(result)
    for result in search_results:
        for sim_map_key in fields_to_add:
            result["fields"][sim_map_key] = None
    return SearchResult(search_results, query_id)


def get_results_children(result):
    search_results = (
        result["root"]["children"]
        if "root" in result and "children" in result["root"]
        else []
    )
    return search_results


async def poll_vespa_keepalive():
    while True:
        await asyncio.sleep(5)
        await vespa_app.keepalive()
        print(f"Vespa keepalive: {time.time()}")


async def generate_similarity_map(
    model, processor, query, q_embs, token_to_idx, result, query_id
):
    loop = asyncio.get_event_loop()
    sim_map_task = partial(
        add_sim_maps_to_result,
        result=result,
        model=model,
        processor=processor,
        query=query,
        q_embs=q_embs,
        token_to_idx=token_to_idx,
        query_id=query_id,
        result_cache=result_cache,
    )
    sim_map_result = await loop.run_in_executor(thread_pool, sim_map_task)
    result_cache.set(query_id, sim_map_result)
    task_cache.set(query_id, True)


@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str):
    """
    Endpoint that each of the sim map button polls to get the sim map image
    when it is ready. If it is not ready, returns a SimMapButtonPoll, that
    continues to poll every 1 second.
    """
    result = result_cache.get(query_id)
    if result is None:
        return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
    search_results = get_results_children(result)
    # Check if idx exists in list of children
    if idx >= len(search_results):
        return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
    else:
        sim_map_key = f"sim_map_{token}"
        sim_map_b64 = search_results[idx]["fields"].get(sim_map_key, None)
        if sim_map_b64 is None:
            return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
        sim_map_img_src = f"data:image/png;base64,{sim_map_b64}"
        return SimMapButtonReady(
            query_id=query_id, idx=idx, token=token, img_src=sim_map_img_src
        )


async def update_full_image_cache(docid: str, query_id: str, idx: int, image_data: str):
    result = None
    max_wait = 20  # seconds. If horribly slow network latency.
    start_time = time.time()
    while result is None and time.time() - start_time < max_wait:
        result = result_cache.get(query_id)
        if result is None:
            await asyncio.sleep(0.1)
    try:
        result["root"]["children"][idx]["fields"]["full_image"] = image_data
    except KeyError as err:
        print(f"Error updating full image cache: {err}")
    result_cache.set(query_id, result)
    print(f"Full image cache updated for query_id {query_id}")
    return


@app.get("/full_image")
async def full_image(docid: str, query_id: str, idx: int):
    """
    Endpoint to get the full quality image for a given result id.
    """
    image_data = await vespa_app.get_full_image_from_vespa(docid)
    # Update the cache with the full image data asynchronously to not block the request
    asyncio.create_task(update_full_image_cache(docid, query_id, idx, image_data))
    # Save the image to a file
    img_path = IMG_DIR / f"{docid}.jpg"
    with open(img_path, "wb") as f:
        f.write(base64.b64decode(image_data))
    return Img(
        src=f"/static/saved/{docid}.jpg",
        alt="something",
        cls="result-image w-full h-full object-contain",
    )


@rt("/suggestions")
async def get_suggestions(request):
    query = request.query_params.get("query", "").lower().strip()

    if query:
        suggestions = await vespa_app.get_suggestions(query)
        if len(suggestions) > 0:
            return JSONResponse({"suggestions": suggestions})

    return JSONResponse({"suggestions": []})


async def message_generator(query_id: str, query: str):
    images = []
    result = None
    all_images_ready = False
    max_wait = 10  # seconds
    start_time = time.time()
    while not all_images_ready and time.time() - start_time < max_wait:
        result = result_cache.get(query_id)
        if result is None:
            await asyncio.sleep(0.1)
            continue
        search_results = get_results_children(result)
        for single_result in search_results:
            img = single_result["fields"].get("full_image", None)
            if img is not None:
                images.append(img)
                if len(images) == len(search_results):
                    all_images_ready = True
                    break
            else:
                await asyncio.sleep(0.1)

    # from b64 to PIL image
    images = [Image.open(io.BytesIO(base64.b64decode(img))) for img in images]
    if not images:
        yield "event: message\ndata: I am sorry, I do not have enough information in the image to answer your question.\n\n"
        yield "event: close\ndata: \n\n"
        return

    # If newlines are present in the response, the connection will be closed.
    def replace_newline_with_br(text):
        return text.replace("\n", "<br>")

    response_text = ""
    async for chunk in await gemini_model.generate_content_async(
        images + ["\n\n Query: ", query], stream=True
    ):
        if chunk.text:
            response_text += chunk.text
            response_text = replace_newline_with_br(response_text)
            yield f"event: message\ndata: {response_text}\n\n"
            await asyncio.sleep(0.1)
    yield "event: close\ndata: \n\n"


@app.get("/get-message")
async def get_message(query_id: str, query: str):
    return StreamingResponse(
        message_generator(query_id=query_id, query=query),
        media_type="text/event-stream",
    )


@rt("/app")
def get():
    return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))


if __name__ == "__main__":
    # ModelManager.get_instance()  # Initialize once at startup
    serve(port=7860)