File size: 7,273 Bytes
8ce4d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3

import os
import torch
from torch.utils.data import DataLoader
from PIL import Image
import numpy as np
from typing import cast
import asyncio

from colpali_engine.models import ColPali, ColPaliProcessor
from colpali_engine.utils.torch_utils import get_torch_device
from vespa.application import Vespa
from vespa.io import VespaQueryResponse
from dotenv import load_dotenv
from pathlib import Path

MAX_QUERY_TERMS = 64
SAVEDIR = Path(__file__) / "output" / "images"
load_dotenv()


def process_queries(processor, queries, image):
    inputs = processor(
        images=[image] * len(queries), text=queries, return_tensors="pt", padding=True
    )
    return inputs


def display_query_results(query, response, hits=5):
    query_time = response.json.get("timing", {}).get("searchtime", -1)
    query_time = round(query_time, 2)
    count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0)
    result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n"

    for i, hit in enumerate(response.hits[:hits]):
        title = hit["fields"]["title"]
        url = hit["fields"]["url"]
        page = hit["fields"]["page_number"]
        image = hit["fields"]["image"]
        _id = hit["id"]
        score = hit["relevance"]

        result_text += f"\nPDF Result {i + 1}\n"
        result_text += f"Title: {title}, page {page+1} with score {score:.2f}\n"
        result_text += f"URL: {url}\n"
        result_text += f"ID: {_id}\n"
        # Optionally, save or display the image
        # img_data = base64.b64decode(image)
        # img_path = SAVEDIR / f"{title}.png"
        # with open(f"{img_path}", "wb") as f:
        #     f.write(img_data)
    print(result_text)


async def query_vespa_default(app, queries, qs):
    async with app.asyncio(connections=1, total_timeout=120) as session:
        for idx, query in enumerate(queries):
            query_embedding = {k: v.tolist() for k, v in enumerate(qs[idx])}
            response: VespaQueryResponse = await session.query(
                yql="select documentid,title,url,image,page_number from pdf_page where userInput(@userQuery)",
                ranking="default",
                userQuery=query,
                timeout=120,
                hits=3,
                body={"input.query(qt)": query_embedding, "presentation.timing": True},
            )
            assert response.is_successful()
            display_query_results(query, response)


async def query_vespa_nearest_neighbor(app, queries, qs):
    # Using nearestNeighbor for retrieval
    target_hits_per_query_tensor = (
        20  # this is a hyper parameter that can be tuned for speed versus accuracy
    )
    async with app.asyncio(connections=1, total_timeout=180) as session:
        for idx, query in enumerate(queries):
            float_query_embedding = {k: v.tolist() for k, v in enumerate(qs[idx])}
            binary_query_embeddings = dict()
            for k, v in float_query_embedding.items():
                binary_vector = (
                    np.packbits(np.where(np.array(v) > 0, 1, 0))
                    .astype(np.int8)
                    .tolist()
                )
                binary_query_embeddings[k] = binary_vector
                if len(binary_query_embeddings) >= MAX_QUERY_TERMS:
                    print(
                        f"Warning: Query has more than {MAX_QUERY_TERMS} terms. Truncating."
                    )
                    break

            # The mixed tensors used in MaxSim calculations
            # We use both binary and float representations
            query_tensors = {
                "input.query(qtb)": binary_query_embeddings,
                "input.query(qt)": float_query_embedding,
            }
            # The query tensors used in the nearest neighbor calculations
            for i in range(0, len(binary_query_embeddings)):
                query_tensors[f"input.query(rq{i})"] = binary_query_embeddings[i]
            nn = []
            for i in range(0, len(binary_query_embeddings)):
                nn.append(
                    f"({{targetHits:{target_hits_per_query_tensor}}}nearestNeighbor(embedding,rq{i}))"
                )
            # We use an OR operator to combine the nearest neighbor operator
            nn = " OR ".join(nn)
            response: VespaQueryResponse = await session.query(
                body={
                    **query_tensors,
                    "presentation.timing": True,
                    "yql": f"select documentid, title, url, image, page_number from pdf_page where {nn}",
                    "ranking.profile": "retrieval-and-rerank",
                    "timeout": 120,
                    "hits": 3,
                },
            )
            assert response.is_successful(), response.json
            display_query_results(query, response)


def main():
    vespa_app_url = os.environ.get(
        "VESPA_APP_URL"
    )  # Ensure this is set to your Vespa app URL
    vespa_cloud_secret_token = os.environ.get("VESPA_CLOUD_SECRET_TOKEN")
    if not vespa_app_url or not vespa_cloud_secret_token:
        raise ValueError(
            "Please set the VESPA_APP_URL and VESPA_CLOUD_SECRET_TOKEN environment variables"
        )
    # Instantiate Vespa connection
    app = Vespa(url=vespa_app_url, vespa_cloud_secret_token=vespa_cloud_secret_token)
    status_resp = app.get_application_status()
    if status_resp.status_code != 200:
        print(f"Failed to connect to Vespa at {vespa_app_url}")
        return
    else:
        print(f"Connected to Vespa at {vespa_app_url}")
    # Load the model
    device = get_torch_device("auto")
    print(f"Using device: {device}")

    model_name = "vidore/colpali-v1.2"
    processor_name = "google/paligemma-3b-mix-448"

    model = cast(
        ColPali,
        ColPali.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
            device_map=device,
        ),
    ).eval()

    processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(processor_name))

    # Create dummy image
    dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))

    # Define queries
    queries = [
        "Percentage of non-fresh water as source?",
        "Policies related to nature risk?",
        "How much of produced water is recycled?",
    ]

    # Obtain query embeddings
    dataloader = DataLoader(
        queries,
        batch_size=1,
        shuffle=False,
        collate_fn=lambda x: process_queries(processor, x, dummy_image),
    )
    qs = []
    for batch_query in dataloader:
        with torch.no_grad():
            batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
            embeddings_query = model(**batch_query)
            qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    # Perform queries using default rank profile
    print("Performing queries using default rank profile:")
    asyncio.run(query_vespa_default(app, queries, qs))

    # Perform queries using nearestNeighbor
    print("Performing queries using nearestNeighbor:")
    asyncio.run(query_vespa_nearest_neighbor(app, queries, qs))


if __name__ == "__main__":
    main()