thomasht86 commited on
Commit
06120a1
·
verified ·
1 Parent(s): 61562fa

Upload main.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. main.py +16 -4
main.py CHANGED
@@ -7,6 +7,7 @@ from concurrent.futures import ThreadPoolExecutor
7
  from functools import partial
8
  from pathlib import Path
9
  import uuid
 
10
 
11
  import google.generativeai as genai
12
  from fasthtml.common import *
@@ -111,8 +112,9 @@ async def keepalive():
111
  return
112
 
113
 
114
- def generate_query_id(query):
115
- return uuid.uuid4().hex
 
116
 
117
 
118
  @rt("/static/{filepath:path}")
@@ -121,7 +123,9 @@ def serve_static(filepath: str):
121
 
122
 
123
  @rt("/")
124
- def get():
 
 
125
  return Layout(Main(Home()))
126
 
127
 
@@ -156,7 +160,10 @@ def get(session, request):
156
  )
157
  )
158
  # Generate a unique query_id based on the query and ranking value
159
- session["query_id"] = generate_query_id(query_value + ranking_value)
 
 
 
160
  query_id = session.get("query_id")
161
  print(f"Query id in /search: {query_id}")
162
  # Show the loading message if a query is provided
@@ -180,6 +187,11 @@ async def get(session, request, query: str, nn: bool = True):
180
  f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
181
  )
182
  # Generate a unique query_id based on the query and ranking value
 
 
 
 
 
183
  query_id = session.get("query_id")
184
  print(f"Query id in /fetch_results: {query_id}")
185
  # Run the embedding and query against Vespa app
 
7
  from functools import partial
8
  from pathlib import Path
9
  import uuid
10
+ import hashlib
11
 
12
  import google.generativeai as genai
13
  from fasthtml.common import *
 
112
  return
113
 
114
 
115
+ def generate_query_id(session_id, query, ranking_value):
116
+ hash_input = (session_id + query + ranking_value).encode("utf-8")
117
+ return hashlib.sha256(hash_input).hexdigest()
118
 
119
 
120
  @rt("/static/{filepath:path}")
 
123
 
124
 
125
  @rt("/")
126
+ def get(session):
127
+ if "session_id" not in session:
128
+ session["session_id"] = str(uuid.uuid4())
129
  return Layout(Main(Home()))
130
 
131
 
 
160
  )
161
  )
162
  # Generate a unique query_id based on the query and ranking value
163
+ if "query_id" not in session:
164
+ session["query_id"] = generate_query_id(
165
+ session["session_id"], query_value, ranking_value
166
+ )
167
  query_id = session.get("query_id")
168
  print(f"Query id in /search: {query_id}")
169
  # Show the loading message if a query is provided
 
187
  f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
188
  )
189
  # Generate a unique query_id based on the query and ranking value
190
+ print(f"Sesssion in /fetch_results: {session}")
191
+ if "query_id" not in session:
192
+ session["query_id"] = generate_query_id(
193
+ session["session_id"], query_value, ranking_value
194
+ )
195
  query_id = session.get("query_id")
196
  print(f"Query id in /fetch_results: {query_id}")
197
  # Run the embedding and query against Vespa app