#!/usr/bin/env python3 import torch from PIL import Image import numpy as np from typing import cast, Generator from pathlib import Path import base64 from io import BytesIO from typing import Union, Tuple, List, Dict, Any import matplotlib import matplotlib.cm as cm import re import io import time import backend.testquery as testquery from colpali_engine.models import ColPali, ColPaliProcessor from colpali_engine.utils.torch_utils import get_torch_device from einops import rearrange from vidore_benchmark.interpretability.torch_utils import ( normalize_similarity_map_per_query_token, ) from vidore_benchmark.interpretability.vit_configs import VIT_CONFIG matplotlib.use("Agg") # Prepare the colormap once to avoid recomputation colormap = cm.get_cmap("viridis") COLPALI_GEMMA_MODEL_NAME = "vidore/colpaligemma-3b-pt-448-base" def load_model() -> Tuple[ColPali, ColPaliProcessor]: model_name = "vidore/colpali-v1.2" device = get_torch_device("auto") print(f"Using device: {device}") # Load the model model = cast( ColPali, ColPali.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, device_map=device, ), ).eval() # Load the processor processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name)) return model, processor def load_vit_config(model): # Load the ViT config print(f"VIT config: {VIT_CONFIG}") vit_config = VIT_CONFIG[COLPALI_GEMMA_MODEL_NAME] return vit_config def gen_similarity_maps( model: ColPali, processor: ColPaliProcessor, device, vit_config, query: str, query_embs: torch.Tensor, token_idx_map: dict, images: List[Union[Path, str]], vespa_sim_maps: List[str], ) -> Generator[Tuple[int, str, str], None, None]: """ Generate similarity maps for the given images and query, and return base64-encoded blended images. Args: model (ColPali): The model used for generating embeddings. processor (ColPaliProcessor): Processor for images and text. device: Device to run the computations on. vit_config: Configuration for the Vision Transformer. query (str): The query string. query_embs (torch.Tensor): Query embeddings. token_idx_map (dict): Mapping from tokens to their indices. images (List[Union[Path, str]]): List of image paths or base64-encoded strings. vespa_sim_maps (List[str]): List of Vespa similarity maps. Yields: Tuple[int, str, str]: A tuple containing the image index, the selected token, and the base64-encoded image. """ # Process images and store original images and sizes processed_images = [] original_images = [] original_sizes = [] for img in images: if isinstance(img, Path): try: img_pil = Image.open(img).convert("RGB") except Exception as e: raise ValueError(f"Failed to open image from path: {e}") elif isinstance(img, str): try: img_pil = Image.open(BytesIO(base64.b64decode(img))).convert("RGB") except Exception as e: raise ValueError(f"Failed to open image from base64 string: {e}") else: raise ValueError(f"Unsupported image type: {type(img)}") original_images.append(img_pil.copy()) original_sizes.append(img_pil.size) # (width, height) processed_images.append(img_pil) # If similarity maps are provided, use them instead of computing them if vespa_sim_maps: print("Using provided similarity maps") # A sim map looks like this: # "quantized": [ # { # "address": { # "patch": "0", # "querytoken": "0" # }, # "value": 12, # score in range [-128, 127] # }, # ... and so on. # Now turn these into a tensor of same shape as previous similarity map vespa_sim_map_tensor = torch.zeros( ( len(vespa_sim_maps), query_embs.size(dim=1), vit_config.n_patch_per_dim, vit_config.n_patch_per_dim, ) ) for idx, vespa_sim_map in enumerate(vespa_sim_maps): for cell in vespa_sim_map["quantized"]["cells"]: patch = int(cell["address"]["patch"]) # if dummy model then just use 1024 as the image_seq_length if hasattr(processor, "image_seq_length"): image_seq_length = processor.image_seq_length else: image_seq_length = 1024 if patch >= image_seq_length: continue query_token = int(cell["address"]["querytoken"]) value = cell["value"] vespa_sim_map_tensor[ idx, int(query_token), int(patch) // vit_config.n_patch_per_dim, int(patch) % vit_config.n_patch_per_dim, ] = value # Normalize the similarity map per query token similarity_map_normalized = normalize_similarity_map_per_query_token( vespa_sim_map_tensor ) else: # Preprocess inputs print("Computing similarity maps") start2 = time.perf_counter() input_image_processed = processor.process_images(processed_images).to(device) # Forward passes with torch.no_grad(): output_image = model.forward(**input_image_processed) # Remove the special tokens from the output output_image = output_image[:, : processor.image_seq_length, :] # Rearrange the output image tensor to represent the 2D grid of patches output_image = rearrange( output_image, "b (h w) c -> b h w c", h=vit_config.n_patch_per_dim, w=vit_config.n_patch_per_dim, ) # Ensure query_embs has batch dimension if query_embs.dim() == 2: query_embs = query_embs.unsqueeze(0).to(device) else: query_embs = query_embs.to(device) # Compute the similarity map similarity_map = torch.einsum( "bnk,bhwk->bnhw", query_embs, output_image ) # Shape: (batch_size, query_tokens, h, w) end2 = time.perf_counter() print(f"Similarity map computation took: {end2 - start2} s") # Normalize the similarity map per query token similarity_map_normalized = normalize_similarity_map_per_query_token( similarity_map ) # Collect the blended images start3 = time.perf_counter() for idx, img in enumerate(original_images): SCALING_FACTOR = 8 sim_map_resolution = ( max(32, int(original_sizes[idx][0] / SCALING_FACTOR)), max(32, int(original_sizes[idx][1] / SCALING_FACTOR)), ) result_per_image = {} for token, token_idx in token_idx_map.items(): if is_special_token(token): continue # Get the similarity map for this image and the selected token sim_map = similarity_map_normalized[idx, token_idx, :, :] # Shape: (h, w) # Move the similarity map to CPU, convert to float (as BFloat16 not supported by Numpy) and convert to NumPy array sim_map_np = sim_map.cpu().float().numpy() # Resize the similarity map to the original image size sim_map_img = Image.fromarray(sim_map_np) sim_map_resized = sim_map_img.resize( sim_map_resolution, resample=Image.BICUBIC ) # Convert the resized similarity map to a NumPy array sim_map_resized_np = np.array(sim_map_resized, dtype=np.float32) # Normalize the similarity map to range [0, 1] sim_map_min = sim_map_resized_np.min() sim_map_max = sim_map_resized_np.max() if sim_map_max - sim_map_min > 1e-6: sim_map_normalized = (sim_map_resized_np - sim_map_min) / ( sim_map_max - sim_map_min ) else: sim_map_normalized = np.zeros_like(sim_map_resized_np) # Apply a colormap to the normalized similarity map heatmap = colormap(sim_map_normalized) # Returns an RGBA array # Convert the heatmap to a PIL Image heatmap_uint8 = (heatmap * 255).astype(np.uint8) heatmap_img = Image.fromarray(heatmap_uint8) heatmap_img_rgba = heatmap_img.convert("RGBA") # Save the image to a BytesIO buffer buffer = io.BytesIO() heatmap_img_rgba.save(buffer, format="PNG") buffer.seek(0) # Encode the image to base64 blended_img_base64 = base64.b64encode(buffer.read()).decode("utf-8") # Store the base64-encoded image result_per_image[token] = blended_img_base64 yield idx, token, blended_img_base64 end3 = time.perf_counter() print(f"Blending images took: {end3 - start3} s") def get_query_embeddings_and_token_map( processor, model, query ) -> Tuple[torch.Tensor, dict]: if model is None: # use static test query data (saves time when testing) return testquery.q_embs, testquery.token_to_idx start_time = time.perf_counter() inputs = processor.process_queries([query]).to(model.device) with torch.no_grad(): embeddings_query = model(**inputs) q_emb = embeddings_query.to("cpu")[0] # Extract the single embedding # Use this cell output to choose a token using its index query_tokens = processor.tokenizer.tokenize(processor.decode(inputs.input_ids[0])) # reverse key, values in dictionary print(query_tokens) token_to_idx = {val: idx for idx, val in enumerate(query_tokens)} end_time = time.perf_counter() print(f"Query inference took: {end_time - start_time} s") return q_emb, token_to_idx def is_special_token(token: str) -> bool: # Pattern for tokens that start with '<', numbers, whitespace, or single characters, or the string 'Question' # Will exclude these tokens from the similarity map generation pattern = re.compile(r"^<.*$|^\d+$|^\s+$|^\w$|^Question$") if (len(token) < 3) or pattern.match(token): return True return False def add_sim_maps_to_result( result: Dict[str, Any], model: ColPali, processor: ColPaliProcessor, query: str, q_embs: Any, token_to_idx: Dict[str, int], query_id: str, result_cache, ) -> Dict[str, Any]: vit_config = load_vit_config(model) imgs: List[str] = [] vespa_sim_maps: List[str] = [] for single_result in result["root"]["children"]: img = single_result["fields"]["blur_image"] if img: imgs.append(img) vespa_sim_map = single_result["fields"].get("summaryfeatures", None) if vespa_sim_map: vespa_sim_maps.append(vespa_sim_map) if not imgs: return result sim_map_imgs_generator = gen_similarity_maps( model=model, processor=processor, device=model.device if hasattr(model, "device") else "cpu", vit_config=vit_config, query=query, query_embs=q_embs, token_idx_map=token_to_idx, images=imgs, vespa_sim_maps=vespa_sim_maps, ) for img_idx, token, sim_mapb64 in sim_map_imgs_generator: print(f"Created sim map for image {img_idx} and token {token}") if ( len(result["root"]["children"]) > img_idx and "fields" in result["root"]["children"][img_idx] and "sim_map" in result["root"]["children"][img_idx]["fields"] ): result["root"]["children"][img_idx]["fields"][f"sim_map_{token}"] = ( sim_mapb64 ) # Update result_cache with the new sim_map result_cache.set(query_id, result) # for single_result, sim_map_dict in zip(result["root"]["children"], sim_map_imgs): # for token, sim_mapb64 in sim_map_dict.items(): # single_result["fields"][f"sim_map_{token}"] = sim_mapb64 return result