import asyncio import base64 import io import os import time from concurrent.futures import ThreadPoolExecutor from functools import partial from pathlib import Path import uuid import google.generativeai as genai from fasthtml.common import * from PIL import Image from shad4fast import * from vespa.application import Vespa from backend.cache import LRUCache from backend.colpali import ( add_sim_maps_to_result, get_query_embeddings_and_token_map, is_special_token, ) from backend.modelmanager import ModelManager from backend.vespa_app import VespaQueryClient from frontend.app import ( ChatResult, Home, Search, SearchBox, SearchResult, SimMapButtonPoll, SimMapButtonReady, WhatIsThis, ) from frontend.layout import Layout highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="") highlight_js_theme = Script(src="/static/js/highlightjs-theme.js") highlight_js = HighlightJS( langs=["python", "javascript", "java", "json", "xml"], dark="github-dark", light="github", ) overlayscrollbars_link = Link( rel="stylesheet", href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css", type="text/css", ) overlayscrollbars_js = Script( src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js" ) awesomplete_link = Link( rel="stylesheet", href="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.css", type="text/css", ) awesomplete_js = Script( src="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.js" ) sselink = Script(src="https://unpkg.com/htmx-ext-sse@2.2.1/sse.js") app, rt = fast_app( htmlkw={"cls": "grid h-full"}, pico=False, hdrs=( highlight_js, highlight_js_theme_link, highlight_js_theme, overlayscrollbars_link, overlayscrollbars_js, awesomplete_link, awesomplete_js, sselink, ShadHead(tw_cdn=False, theme_handle=True), ), ) vespa_app: Vespa = VespaQueryClient() result_cache = LRUCache(max_size=20) # Each result can be ~10MB task_cache = LRUCache( max_size=1000 ) # Map from query_id to boolean value - False if not all results are ready. thread_pool = ThreadPoolExecutor() # Gemini config genai.configure(api_key=os.getenv("GEMINI_API_KEY")) GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images. If the user query can not be interpreted as a question, or if the answer to the query can not be inferred from the images, answer with the exact phrase "I am sorry, I do not have enough information in the image to answer your question.". Your response should be HTML formatted, but only simple tags, such as .
, ,
and
tags, bold text will be enclosed in tags, and so on.
But, you should NOT include backticks (`) or HTML tags in your response.
"""
gemini_model = genai.GenerativeModel(
"gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)
STATIC_DIR = Path(__file__).parent / "static"
IMG_DIR = STATIC_DIR / "saved"
os.makedirs(STATIC_DIR, exist_ok=True)
@app.on_event("startup")
def load_model_on_startup():
app.manager = ModelManager.get_instance()
return
@app.on_event("startup")
async def keepalive():
asyncio.create_task(poll_vespa_keepalive())
return
def generate_query_id(query):
return uuid.uuid4().hex
@rt("/static/{filepath:path}")
def serve_static(filepath: str):
return FileResponse(STATIC_DIR / filepath)
@rt("/")
def get():
return Layout(Main(Home()))
@rt("/what-is-this")
def get():
return Layout(Main(WhatIsThis()))
@rt("/search")
def get(session, request):
# Extract the 'query' and 'ranking' parameters from the URL
query_value = request.query_params.get("query", "").strip()
ranking_value = request.query_params.get("ranking", "nn+colpali")
print("/search: Fetching results for ranking_value:", ranking_value)
# Always render the SearchBox first
if not query_value:
# Show SearchBox and a message for missing query
return Layout(
Main(
Div(
SearchBox(query_value=query_value, ranking_value=ranking_value),
Div(
P(
"No query provided. Please enter a query.",
cls="text-center text-muted-foreground",
),
cls="p-10",
),
cls="grid",
)
)
)
# Generate a unique query_id based on the query and ranking value
session["query_id"] = generate_query_id(query_value + ranking_value)
query_id = session.get("query_id")
print(f"Query id in /search: {query_id}")
# Show the loading message if a query is provided
return Layout(
Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
Aside(
ChatResult(query_id=query_id, query=query_value),
cls="border-t border-l hidden md:block",
),
) # Show SearchBox and Loading message initially
@rt("/fetch_results")
async def get(session, request, query: str, nn: bool = True):
if "hx-request" not in request.headers:
return RedirectResponse("/search")
# Extract ranking option from the request
ranking_value = request.query_params.get("ranking")
print(
f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
)
# Generate a unique query_id based on the query and ranking value
query_id = session.get("query_id")
print(f"Query id in /fetch_results: {query_id}")
# Run the embedding and query against Vespa app
model = app.manager.model
processor = app.manager.processor
q_embs, token_to_idx = get_query_embeddings_and_token_map(processor, model, query)
start = time.perf_counter()
# Fetch real search results from Vespa
result = await vespa_app.get_result_from_query(
query=query,
q_embs=q_embs,
ranking=ranking_value,
token_to_idx=token_to_idx,
)
end = time.perf_counter()
print(
f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds"
)
# Initialize sim_map_ fields in the result
fields_to_add = [
f"sim_map_{token}"
for token in token_to_idx.keys()
if not is_special_token(token)
]
for child in result["root"]["children"]:
for sim_map_key in fields_to_add:
child["fields"][sim_map_key] = None
result_cache.set(query_id, result)
# Start generating the similarity map in the background
asyncio.create_task(
generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
)
)
search_results = get_results_children(result)
return SearchResult(search_results, query_id)
def get_results_children(result):
search_results = (
result["root"]["children"]
if "root" in result and "children" in result["root"]
else []
)
return search_results
async def poll_vespa_keepalive():
while True:
await asyncio.sleep(5)
await vespa_app.keepalive()
print(f"Vespa keepalive: {time.time()}")
async def generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
):
loop = asyncio.get_event_loop()
sim_map_task = partial(
add_sim_maps_to_result,
result=result,
model=model,
processor=processor,
query=query,
q_embs=q_embs,
token_to_idx=token_to_idx,
query_id=query_id,
result_cache=result_cache,
)
sim_map_result = await loop.run_in_executor(thread_pool, sim_map_task)
result_cache.set(query_id, sim_map_result)
task_cache.set(query_id, True)
@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str):
"""
Endpoint that each of the sim map button polls to get the sim map image
when it is ready. If it is not ready, returns a SimMapButtonPoll, that
continues to poll every 1 second.
"""
result = result_cache.get(query_id)
if result is None:
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
search_results = get_results_children(result)
# Check if idx exists in list of children
if idx >= len(search_results):
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
else:
sim_map_key = f"sim_map_{token}"
sim_map_b64 = search_results[idx]["fields"].get(sim_map_key, None)
if sim_map_b64 is None:
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
sim_map_img_src = f"data:image/png;base64,{sim_map_b64}"
return SimMapButtonReady(
query_id=query_id, idx=idx, token=token, img_src=sim_map_img_src
)
async def update_full_image_cache(docid: str, query_id: str, idx: int, image_data: str):
result = None
max_wait = 20 # seconds. If horribly slow network latency.
start_time = time.time()
while result is None and time.time() - start_time < max_wait:
result = result_cache.get(query_id)
if result is None:
await asyncio.sleep(0.1)
try:
result["root"]["children"][idx]["fields"]["full_image"] = image_data
except KeyError as err:
print(f"Error updating full image cache: {err}")
result_cache.set(query_id, result)
print(f"Full image cache updated for query_id {query_id}")
return
@app.get("/full_image")
async def full_image(docid: str, query_id: str, idx: int):
"""
Endpoint to get the full quality image for a given result id.
"""
image_data = await vespa_app.get_full_image_from_vespa(docid)
# Update the cache with the full image data
asyncio.create_task(update_full_image_cache(docid, query_id, idx, image_data))
return Img(
src=f"data:image/png;base64,{image_data}",
alt="something",
cls="result-image w-full h-full object-contain",
)
@rt("/suggestions")
async def get_suggestions(request):
query = request.query_params.get("query", "").lower().strip()
if query:
suggestions = await vespa_app.get_suggestions(query)
if len(suggestions) > 0:
return JSONResponse({"suggestions": suggestions})
return JSONResponse({"suggestions": []})
async def message_generator(query_id: str, query: str):
images = []
result = None
all_images_ready = False
max_wait = 10 # seconds
start_time = time.time()
while not all_images_ready and time.time() - start_time < max_wait:
result = result_cache.get(query_id)
if result is None:
await asyncio.sleep(0.1)
continue
search_results = get_results_children(result)
for single_result in search_results:
img = single_result["fields"].get("full_image", None)
if img is not None:
images.append(img)
if len(images) == len(search_results):
all_images_ready = True
break
else:
await asyncio.sleep(0.1)
# from b64 to PIL image
images = [Image.open(io.BytesIO(base64.b64decode(img))) for img in images]
if not images:
yield "event: message\ndata: I am sorry, I do not have enough information in the image to answer your question.\n\n"
yield "event: close\ndata: \n\n"
return
# If newlines are present in the response, the connection will be closed.
def replace_newline_with_br(text):
return text.replace("\n", "
")
response_text = ""
async for chunk in await gemini_model.generate_content_async(
images + ["\n\n Query: ", query], stream=True
):
if chunk.text:
response_text += chunk.text
response_text = replace_newline_with_br(response_text)
yield f"event: message\ndata: {response_text}\n\n"
await asyncio.sleep(0.1)
yield "event: close\ndata: \n\n"
@app.get("/get-message")
async def get_message(query_id: str, query: str):
return StreamingResponse(
message_generator(query_id=query_id, query=query),
media_type="text/event-stream",
)
@rt("/app")
def get():
return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))
if __name__ == "__main__":
# ModelManager.get_instance() # Initialize once at startup
HOT_RELOAD = os.getenv("HOT_RELOAD", "False").lower() == "true"
print(f"Starting app with hot reload: {HOT_RELOAD}")
serve(port=7860, reload=HOT_RELOAD)