Spaces:
Paused
Paused
File size: 11,153 Bytes
577df10 149bacf 577df10 e3a7bc4 577df10 c54df6c a67e3bb 577df10 c54df6c 149bacf f7b6dac c54df6c 92a45ca c54df6c de4fac2 8a57fbc de4fac2 c54df6c 8a57fbc c54df6c f7b6dac c54df6c 577df10 2e443e1 577df10 b0bb202 577df10 cf99bac 816a741 d4395e7 577df10 f7b6dac 577df10 c54df6c 577df10 c54df6c 577df10 44204a8 2aaddfb c54df6c 577df10 7fa3b42 cf99bac c54df6c 577df10 2aaddfb bdea47f c54df6c cf99bac 2aaddfb c54df6c 577df10 8e719a9 4d04778 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import logging
import os
import boto3
import json
import shlex
import subprocess
import tempfile
import time
import base64
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
import io
from io import BytesIO
torch.cuda.empty_cache()
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
HEADER = """FRAME AI"""
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
ACCESS = os.getenv("ACCESS")
SECRET = os.getenv("SECRET")
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
# def generate_image_from_text(pos_prompt):
# # bedrock_runtime = boto3.client(region_name = 'us-east-1', service_name='bedrock-runtime')
# parameters = {'text_prompts': [{'text': pos_prompt , 'weight':1},
# {'text': """Blurry, out of frame, out of focus, Detailed, dull, duplicate, bad quality, low resolution, cropped""", 'weight': -1}],
# 'cfg_scale': 7, 'seed': 0, 'samples': 1}
# request_body = json.dumps(parameters)
# response = bedrock_runtime.invoke_model(body=request_body,modelId = 'stability.stable-diffusion-xl-v1')
# response_body = json.loads(response.get('body').read())
# base64_image_data = base64.b64decode(response_body['artifacts'][0]['base64'])
# return Image.open(io.BytesIO(base64_image_data))
def gen_pos_prompt(text):
instruction = f'''Your task is to create a positive prompt for image generation.
Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors.
Guidelines:
Complex Objects (e.g., animals, vehicles): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity.
Example Input: A sports bike
Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast.
Example Input: A lion
Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure.
Example Input: A tennis ball
Example Positive Prompt: Realistic depiction of a tennis ball with accurate shape and texture, digital painting, clean lines, minimal additional details, soft lighting, neutral or muted colors, focus on structural integrity.
Prompt Structure:
Subject: Clearly describe the object and its essential shape and structure.
Medium: Specify the art style (e.g., digital painting, concept art).
Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects).
Resolution: Mention resolution if necessary (e.g., basic resolution).
Lighting: Indicate the type of lighting (e.g., soft lighting).
Color: Use neutral or muted colors with minimal emphasis on color details.
Additional Details: Keep additional details minimal or specify if not desired.
Input: {text}
Positive Prompt:
'''
body = json.dumps({'inputText': instruction,
'textGenerationConfig': {'temperature': 0.1, 'topP': 0.01, 'maxTokenCount':512}})
response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1')
pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText']
return pos_prompt
def encode_image_to_base64(image):
with io.BytesIO() as buffered:
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def generate_image_from_text(encoded_image, seed, pos_prompt=None):
neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
encoded_str = encode_image_to_base64(encoded_image)
if pos_prompt:
parameters = {
'taskType': 'IMAGE_VARIATION',
'imageVariationParams': {
'images': [encoded_str],
'text': gen_pos_prompt(pos_prompt),
'negativeText': neg_prompt,
'similarityStrength': 0.7
},
'imageGenerationConfig': {
"cfgScale": 8,
"seed": int(seed),
"width": 512,
"height": 512,
"numberOfImages": 1
}
}
else:
parameters = {
'taskType': 'IMAGE_VARIATION',
'imageVariationParams': {
'images': [encoded_str],
'negativeText': neg_prompt,
'similarityStrength': 0.7
},
'imageGenerationConfig': {
"cfgScale": 8,
"seed": int(seed),
"width": 512,
"height": 512,
"numberOfImages": 1
}
}
request_body = json.dumps(parameters)
response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v1')
response_body = json.loads(response.get('body').read())
base64_image_data = base64.b64decode(response_body['images'][0])
return Image.open(io.BytesIO(base64_image_data))
def check_input_image(input_image):
print(input_image)
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background, foreground_ratio):
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
return image
@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
mesh = to_gradio_3d_orientation(mesh)
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
mesh.export(mesh_path_glb.name)
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped
mesh.export(mesh_path_obj.name)
return mesh_path_obj.name, mesh_path_glb.name
def run_example(image, seed, use_image, do_remove_background, foreground_ratio, mc_resolution, text_prompt=None):
if use_image:
image_pil = generate_image_from_text(encoded_image=image, seed=seed, pos_prompt=text_prompt)
else:
image_pil = image
preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"])
return preprocessed, mesh_name_obj, mesh_name_glb
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Generated Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image"
)
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter Positive Prompt"
)
seed = gr.Textbox(label="Random Seed", value=0)
use_image = gr.Checkbox(
label="Enhance Image", value=True
)
processed_image = gr.Image(label="Processed Image", interactive=False, visible=False)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True
)
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05,
)
mc_resolution = gr.Slider(
label="Marching Cubes Resolution",
minimum=32,
maximum=320,
value=256,
step=32
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Column():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
interactive=False,
)
gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(
label="Output Model (GLB Format)",
interactive=False,
)
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=run_example,
inputs=[input_image, seed, use_image, do_remove_background, foreground_ratio, mc_resolution, text_prompt],
outputs=[processed_image, output_model_obj, output_model_glb],
# outputs=[output_model_obj, output_model_glb],
)
demo.queue()
demo.launch(auth=(os.getenv("USERNAME"),os.getenv("PASSWORD"))) |