File size: 11,153 Bytes
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149bacf
577df10
e3a7bc4
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54df6c
 
 
 
a67e3bb
 
 
 
 
 
 
 
 
 
 
577df10
c54df6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149bacf
f7b6dac
 
 
c54df6c
 
92a45ca
c54df6c
 
de4fac2
 
 
 
 
 
 
 
 
 
 
8a57fbc
de4fac2
 
 
 
 
 
 
c54df6c
 
 
 
 
 
 
 
8a57fbc
c54df6c
 
 
 
f7b6dac
c54df6c
 
 
 
 
 
577df10
2e443e1
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0bb202
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
cf99bac
 
 
 
 
816a741
d4395e7
577df10
 
f7b6dac
577df10
 
 
 
 
c54df6c
577df10
c54df6c
577df10
 
44204a8
2aaddfb
c54df6c
 
 
 
577df10
7fa3b42
cf99bac
 
 
c54df6c
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aaddfb
bdea47f
c54df6c
cf99bac
2aaddfb
c54df6c
577df10
 
8e719a9
4d04778
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import logging
import os
import boto3
import json
import shlex
import subprocess
import tempfile
import time
import base64
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
import io
from io import BytesIO

torch.cuda.empty_cache()

subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation


HEADER = """FRAME AI"""

if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)

rembg_session = rembg.new_session()
ACCESS = os.getenv("ACCESS")
SECRET = os.getenv("SECRET")
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
# def generate_image_from_text(pos_prompt):
#     # bedrock_runtime = boto3.client(region_name = 'us-east-1', service_name='bedrock-runtime')
#     parameters = {'text_prompts': [{'text': pos_prompt , 'weight':1},
#                                     {'text': """Blurry, out of frame, out of focus, Detailed, dull, duplicate, bad quality, low resolution, cropped""", 'weight': -1}],
#                   'cfg_scale': 7, 'seed': 0, 'samples': 1}
#     request_body = json.dumps(parameters)
#     response = bedrock_runtime.invoke_model(body=request_body,modelId = 'stability.stable-diffusion-xl-v1')
#     response_body = json.loads(response.get('body').read())
#     base64_image_data = base64.b64decode(response_body['artifacts'][0]['base64'])
    
#     return Image.open(io.BytesIO(base64_image_data))


def gen_pos_prompt(text):
  instruction = f'''Your task is to create a positive prompt for image generation.
    Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors.
    
    Guidelines:
    
    Complex Objects (e.g., animals, vehicles): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity.
    
    Example Input: A sports bike
    Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast.
    
    Example Input: A lion
    Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
    
    Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure.
    
    Example Input: A tennis ball
    Example Positive Prompt: Realistic depiction of a tennis ball with accurate shape and texture, digital painting, clean lines, minimal additional details, soft lighting, neutral or muted colors, focus on structural integrity.
    
    Prompt Structure:
    
    Subject: Clearly describe the object and its essential shape and structure.
    Medium: Specify the art style (e.g., digital painting, concept art).
    Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects).
    Resolution: Mention resolution if necessary (e.g., basic resolution).
    Lighting: Indicate the type of lighting (e.g., soft lighting).
    Color: Use neutral or muted colors with minimal emphasis on color details.
    Additional Details: Keep additional details minimal or specify if not desired.
    Input: {text}
    Positive Prompt: 
    '''

  body = json.dumps({'inputText': instruction,
                     'textGenerationConfig': {'temperature': 0.1, 'topP': 0.01, 'maxTokenCount':512}})
  response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1')
  pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText']
  return pos_prompt

def encode_image_to_base64(image):
    with io.BytesIO() as buffered:
        image.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode('utf-8')


def generate_image_from_text(encoded_image, seed, pos_prompt=None):
    neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
    encoded_str = encode_image_to_base64(encoded_image)
    if pos_prompt:
        parameters = {
              'taskType': 'IMAGE_VARIATION',
              'imageVariationParams': {
                  'images': [encoded_str],
                  'text': gen_pos_prompt(pos_prompt),
                  'negativeText': neg_prompt,
                  'similarityStrength': 0.7
              },
              'imageGenerationConfig': {
                  "cfgScale": 8,
                  "seed": int(seed),
                  "width": 512,
                  "height": 512,
                  "numberOfImages": 1
              }
          }
    else:
        parameters = {
          'taskType': 'IMAGE_VARIATION',
          'imageVariationParams': {
              'images': [encoded_str],
              'negativeText': neg_prompt,
              'similarityStrength': 0.7
          },
          'imageGenerationConfig': {
              "cfgScale": 8,
              "seed": int(seed),
              "width": 512,
              "height": 512,
              "numberOfImages": 1
          }
      }  
    request_body = json.dumps(parameters)
    response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v1')
    response_body = json.loads(response.get('body').read())
    base64_image_data = base64.b64decode(response_body['images'][0])
    return Image.open(io.BytesIO(base64_image_data))

def check_input_image(input_image):
    print(input_image)
    if input_image is None:
        raise gr.Error("No image uploaded!")

def preprocess(input_image, do_remove_background, foreground_ratio):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image

@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
    mesh = to_gradio_3d_orientation(mesh)

    mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
    mesh.export(mesh_path_glb.name)

    mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
    mesh.apply_scale([-1, 1, 1])  # Otherwise the visualized .obj will be flipped
    mesh.export(mesh_path_obj.name)
    
    return mesh_path_obj.name, mesh_path_glb.name

def run_example(image, seed, use_image, do_remove_background, foreground_ratio, mc_resolution, text_prompt=None):
    if use_image:
        image_pil = generate_image_from_text(encoded_image=image, seed=seed, pos_prompt=text_prompt)
    else:
        image_pil = image
    preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
    mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"])
    return preprocessed, mesh_name_obj, mesh_name_glb

    
with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                
                input_image = gr.Image(
                    label="Generated Image",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image" 
                )
                text_prompt = gr.Textbox(
                    label="Text Prompt",
                    placeholder="Enter Positive Prompt"
                )
                seed = gr.Textbox(label="Random Seed", value=0)
                use_image = gr.Checkbox(
                        label="Enhance Image", value=True
                    )
                processed_image = gr.Image(label="Processed Image", interactive=False, visible=False)
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=0.85,
                        step=0.05,
                    )
                    mc_resolution = gr.Slider(
                        label="Marching Cubes Resolution",
                        minimum=32,
                        maximum=320,
                        value=256,
                        step=32
                     )
            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")
        with gr.Column():
            with gr.Tab("OBJ"):
                output_model_obj = gr.Model3D(
                    label="Output Model (OBJ Format)",
                    interactive=False,
                )
                gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
            with gr.Tab("GLB"):
                output_model_glb = gr.Model3D(
                    label="Output Model (GLB Format)",
                    interactive=False,
                )
                gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
                
    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=run_example,
        inputs=[input_image, seed, use_image, do_remove_background, foreground_ratio, mc_resolution, text_prompt],
        outputs=[processed_image, output_model_obj, output_model_glb],
        # outputs=[output_model_obj, output_model_glb],
    )

demo.queue()
demo.launch(auth=(os.getenv("USERNAME"),os.getenv("PASSWORD")))