File size: 8,853 Bytes
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import dataclasses
import importlib
import math
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union

import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from jaxtyping import Bool, Float, Int, Num
from omegaconf import DictConfig, OmegaConf
from torch import Tensor


class BaseModule(nn.Module):
    @dataclass
    class Config:
        pass

    cfg: Config  # add this to every subclass of BaseModule to enable static type checking

    def __init__(
        self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
    ) -> None:
        super().__init__()
        self.cfg = parse_structured(self.Config, cfg)
        self.configure(*args, **kwargs)

    def configure(self, *args, **kwargs) -> None:
        raise NotImplementedError


def find_class(cls_string):
    module_string = ".".join(cls_string.split(".")[:-1])
    cls_name = cls_string.split(".")[-1]
    module = importlib.import_module(module_string, package=None)
    cls = getattr(module, cls_name)
    return cls


def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any:
    # Check if cfg.keys are in fields
    cfg_ = cfg.copy()
    keys = list(cfg_.keys())

    field_names = {f.name for f in dataclasses.fields(fields)}
    for key in keys:
        # This is helpful when swapping out modules from CLI
        if key not in field_names:
            print(f"Ignoring {key} as it's not supported by {fields}")
            cfg_.pop(key)
    scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg_)
    return scfg


EPS_DTYPE = {
    torch.float16: 1e-4,
    torch.bfloat16: 1e-4,
    torch.float32: 1e-7,
    torch.float64: 1e-8,
}


def dot(x, y, dim=-1):
    return torch.sum(x * y, dim, keepdim=True)


def reflect(x, n):
    return x - 2 * dot(x, n) * n


def normalize(x, dim=-1, eps=None):
    if eps is None:
        eps = EPS_DTYPE[x.dtype]
    return F.normalize(x, dim=dim, p=2, eps=eps)


def tri_winding(tri: Float[Tensor, "*B 3 2"]) -> Float[Tensor, "*B 3 3"]:
    # One pad for determinant
    tri_sq = F.pad(tri, (0, 1), "constant", 1.0)
    det_tri = torch.det(tri_sq)
    tri_rev = torch.cat(
        (tri_sq[..., 0:1, :], tri_sq[..., 2:3, :], tri_sq[..., 1:2, :]), -2
    )
    tri_sq[det_tri < 0] = tri_rev[det_tri < 0]
    return tri_sq


def triangle_intersection_2d(
    t1: Float[Tensor, "*B 3 2"],
    t2: Float[Tensor, "*B 3 2"],
    eps=1e-12,
) -> Float[Tensor, "*B"]:  # noqa: F821
    """Returns True if triangles collide, False otherwise"""

    def chk_edge(x: Float[Tensor, "*B 3 3"]) -> Bool[Tensor, "*B"]:  # noqa: F821
        logdetx = torch.logdet(x.double())
        if eps is None:
            return ~torch.isfinite(logdetx)
        return ~(torch.isfinite(logdetx) & (logdetx > math.log(eps)))

    t1s = tri_winding(t1)
    t2s = tri_winding(t2)

    # Assume the triangles do not collide in the begging
    ret = torch.zeros(t1.shape[0], dtype=torch.bool, device=t1.device)
    for i in range(3):
        edge = torch.roll(t1s, i, dims=1)[:, :2, :]
        # Check if all points of triangle 2 lay on the external side of edge E.
        # If this is the case the triangle do not collide
        upd = (
            chk_edge(torch.cat((edge, t2s[:, 0:1]), 1))
            & chk_edge(torch.cat((edge, t2s[:, 1:2]), 1))
            & chk_edge(torch.cat((edge, t2s[:, 2:3]), 1))
        )
        # Here no collision is still True due to inversion
        ret = ret | upd

    for i in range(3):
        edge = torch.roll(t2s, i, dims=1)[:, :2, :]

        upd = (
            chk_edge(torch.cat((edge, t1s[:, 0:1]), 1))
            & chk_edge(torch.cat((edge, t1s[:, 1:2]), 1))
            & chk_edge(torch.cat((edge, t1s[:, 2:3]), 1))
        )
        # Here no collision is still True due to inversion
        ret = ret | upd

    return ~ret  # Do the inversion


ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]


def scale_tensor(
    dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
):
    if inp_scale is None:
        inp_scale = (0, 1)
    if tgt_scale is None:
        tgt_scale = (0, 1)
    if isinstance(tgt_scale, Tensor):
        assert dat.shape[-1] == tgt_scale.shape[-1]
    dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
    dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
    return dat


def dilate_fill(img, mask, iterations=10):
    oldMask = mask.float()
    oldImg = img

    mask_kernel = torch.ones(
        (1, 1, 3, 3),
        dtype=oldMask.dtype,
        device=oldMask.device,
    )

    for i in range(iterations):
        newMask = torch.nn.functional.max_pool2d(oldMask, 3, 1, 1)

        # Fill the extension with mean color of old valid regions
        img_unfold = F.unfold(oldImg, (3, 3)).view(1, 3, 3 * 3, -1)
        mask_unfold = F.unfold(oldMask, (3, 3)).view(1, 1, 3 * 3, -1)
        new_mask_unfold = F.unfold(newMask, (3, 3)).view(1, 1, 3 * 3, -1)

        # Average color of the valid region
        mean_color = (img_unfold.sum(dim=2) / mask_unfold.sum(dim=2).clip(1)).unsqueeze(
            2
        )
        # Extend it to the new region
        fill_color = (mean_color * new_mask_unfold).view(1, 3 * 3 * 3, -1)

        mask_conv = F.conv2d(
            newMask, mask_kernel, padding=1
        )  # Get the sum for each kernel patch
        newImg = F.fold(
            fill_color, (img.shape[-2], img.shape[-1]), (3, 3)
        ) / mask_conv.clamp(1)

        diffMask = newMask - oldMask

        oldMask = newMask
        oldImg = torch.lerp(oldImg, newImg, diffMask)

    return oldImg


def float32_to_uint8_np(
    x: Float[np.ndarray, "*B H W C"],
    dither: bool = True,
    dither_mask: Optional[Float[np.ndarray, "*B H W C"]] = None,
    dither_strength: float = 1.0,
) -> Int[np.ndarray, "*B H W C"]:
    if dither:
        dither = (
            dither_strength * np.random.rand(*x[..., :1].shape).astype(np.float32) - 0.5
        )
        if dither_mask is not None:
            dither = dither * dither_mask
        return np.clip(np.floor((256.0 * x + dither)), 0, 255).astype(np.uint8)
    return np.clip(np.floor((256.0 * x)), 0, 255).astype(torch.uint8)


def convert_data(data):
    if data is None:
        return None
    elif isinstance(data, np.ndarray):
        return data
    elif isinstance(data, torch.Tensor):
        if data.dtype in [torch.float16, torch.bfloat16]:
            data = data.float()
        return data.detach().cpu().numpy()
    elif isinstance(data, list):
        return [convert_data(d) for d in data]
    elif isinstance(data, dict):
        return {k: convert_data(v) for k, v in data.items()}
    else:
        raise TypeError(
            "Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting",
            type(data),
        )


class ImageProcessor:
    def convert_and_resize(
        self,
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
        size: int,
    ):
        if isinstance(image, PIL.Image.Image):
            image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0)
        elif isinstance(image, np.ndarray):
            if image.dtype == np.uint8:
                image = torch.from_numpy(image.astype(np.float32) / 255.0)
            else:
                image = torch.from_numpy(image)
        elif isinstance(image, torch.Tensor):
            pass

        batched = image.ndim == 4

        if not batched:
            image = image[None, ...]
        image = F.interpolate(
            image.permute(0, 3, 1, 2),
            (size, size),
            mode="bilinear",
            align_corners=False,
            antialias=True,
        ).permute(0, 2, 3, 1)
        if not batched:
            image = image[0]
        return image

    def __call__(
        self,
        image: Union[
            PIL.Image.Image,
            np.ndarray,
            torch.FloatTensor,
            List[PIL.Image.Image],
            List[np.ndarray],
            List[torch.FloatTensor],
        ],
        size: int,
    ) -> Any:
        if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4:
            image = self.convert_and_resize(image, size)
        else:
            if not isinstance(image, list):
                image = [image]
            image = [self.convert_and_resize(im, size) for im in image]
            image = torch.stack(image, dim=0)
        return image


def get_intrinsic_from_fov(fov, H, W, bs=-1):
    focal_length = 0.5 * H / np.tan(0.5 * fov)
    intrinsic = np.identity(3, dtype=np.float32)
    intrinsic[0, 0] = focal_length
    intrinsic[1, 1] = focal_length
    intrinsic[0, 2] = W / 2.0
    intrinsic[1, 2] = H / 2.0

    if bs > 0:
        intrinsic = intrinsic[None].repeat(bs, axis=0)

    return torch.from_numpy(intrinsic)