Spaces:
Runtime error
Runtime error
File size: 6,330 Bytes
d945eeb 44853a2 d945eeb 44853a2 d945eeb 9f677a8 44853a2 9f677a8 d945eeb 3dd07dc d945eeb 9f677a8 d945eeb 9f677a8 d945eeb 9f677a8 d945eeb 9f677a8 d945eeb 9f677a8 44853a2 9f677a8 7b5f3f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import tempfile
import time
from functools import lru_cache
from typing import Any
import boto3
import gradio as gr
import numpy as np
import rembg
import torch
from gradio_litmodel3d import LitModel3D
from PIL import Image
from botocore.exceptions import NoCredentialsError, PartialCredentialsError
import sf3d.utils as sf3d_utils
from sf3d.system import SF3D
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import FileResponse
import datetime
ACCESS = os.getenv("ACCESS")
SECRET = os.getenv("SECRET")
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
app = FastAPI()
rembg_session = rembg.new_session()
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 1.6
COND_FOVY_DEG = 40
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
)
model = SF3D.from_pretrained(
"stabilityai/stable-fast-3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
model.eval().cuda()
example_files = [
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]
def run_model(input_image):
start = time.time()
with torch.no_grad():
with torch.autocast(device_type="cuda", dtype=torch.float16):
model_batch = create_batch(input_image)
model_batch = {k: v.cuda() for k, v in model_batch.items()}
trimesh_mesh, _glob_dict = model.generate_mesh(model_batch, 1024)
trimesh_mesh = trimesh_mesh[0]
# Create new tmp file
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
print("Generation took:", time.time() - start, "s")
return tmp_file.name
def create_batch(input_image: Image) -> dict[str, Any]:
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
@lru_cache
def checkerboard(squares: int, size: int, min_value: float = 0.5):
base = np.zeros((squares, squares)) + min_value
base[1::2, ::2] = 1
base[::2, 1::2] = 1
repeat_mult = size // squares
return (
base.repeat(repeat_mult, axis=0)
.repeat(repeat_mult, axis=1)[:, :, None]
.repeat(3, axis=-1)
)
def remove_background(input_image: Image) -> Image:
return rembg.remove(input_image, session=rembg_session)
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image, mode="RGBA").resize(
(COND_WIDTH, COND_HEIGHT)
)
return new_image
def square_crop(input_image: Image) -> Image:
# Perform a center square crop
min_size = min(input_image.size)
left = (input_image.size[0] - min_size) // 2
top = (input_image.size[1] - min_size) // 2
right = (input_image.size[0] + min_size) // 2
bottom = (input_image.size[1] + min_size) // 2
return input_image.crop((left, top, right, bottom)).resize(
(COND_WIDTH, COND_HEIGHT)
)
def show_mask_img(input_image: Image) -> Image:
img_numpy = np.array(input_image)
alpha = img_numpy[:, :, 3] / 255.0
chkb = checkerboard(32, 512) * 255
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
return Image.fromarray(new_img.astype(np.uint8), mode="RGB")
def upload_file_to_s3(file_path, bucket_name, object_name=None):
s3_client.upload_file(file_path, bucket_name, object_name)
return True
@app.post("/process-image/")
async def process_image(file: UploadFile = File(...), foreground_ratio: float = 0.85):
input_image = Image.open(file.file).convert("RGBA")
rem_removed = remove_background(input_image)
sqr_crop = square_crop(rem_removed)
fr_res = resize_foreground(sqr_crop, foreground_ratio)
glb_file = run_model(fr_res)
timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
object_name = f'object_{timestamp}.glb'
if upload_file_to_s3(glb_file, 'framebucket3d',object_name):
return {
"glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}"
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |