Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from sf3d.models.utils import BaseModule | |
class GEGLU(nn.Module): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
if gate.device.type != "mps": | |
return F.gelu(gate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
def forward(self, hidden_states, scale: float = 1.0): | |
args = () | |
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1) | |
return hidden_states * self.gelu(gate) | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
kv_dim=None, | |
num_heads=16, | |
qkv_bias=False, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
kv_dim = dim if not kv_dim else kv_dim | |
self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias) | |
self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias) | |
self.attn_drop = attn_drop | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x_q, x_kv): | |
B, N_q, C = x_q.shape | |
B, N_kv, _ = x_kv.shape | |
# [B, N_q, C] -> [B, N_q, H, C/H] | |
q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads) | |
# [B, N_kv, C] -> [B, N_kv, H, C/H] | |
k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) | |
v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) | |
# attention | |
x = torch.nn.functional.scaled_dot_product_attention( | |
q.permute(0, 2, 1, 3), | |
k.permute(0, 2, 1, 3), | |
v.permute(0, 2, 1, 3), | |
attn_mask=None, | |
dropout_p=self.attn_drop, | |
scale=self.scale, | |
).permute(0, 2, 1, 3) | |
# [B, N_q, H, C/H] -> [B, N_q, C] | |
x = x.reshape(B, N_q, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
act_fn = GEGLU(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
self.net.append(act_fn) | |
self.net.append(nn.Dropout(dropout)) | |
self.net.append(nn.Linear(inner_dim, dim_out)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for module in self.net: | |
x = module(x) | |
return x | |
class BasicBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
kv_dim: Optional[int] = None, | |
num_heads: int = 16, | |
qkv_bias: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
ff_drop: float = 0.0, | |
): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(dim) | |
self.attn1 = CrossAttention( | |
dim, | |
kv_dim=dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
) | |
self.norm2 = nn.LayerNorm(dim) | |
self.attn2 = CrossAttention( | |
dim, | |
kv_dim=kv_dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
) | |
self.norm3 = nn.LayerNorm(dim) | |
self.ff = FeedForward(dim, dropout=ff_drop) | |
def forward(self, z, x): | |
z_norm = self.norm1(z) | |
z = z + self.attn1(z_norm, z_norm) | |
# TODO: do we need to have the second attention when x is None? | |
z_norm = self.norm2(z) | |
z = z + self.attn2(z_norm, x if x is not None else z_norm) | |
z_norm = self.norm3(z) | |
z = z + self.ff(z_norm) | |
return z | |
class SingleStreamTransformer(BaseModule): | |
class Config(BaseModule.Config): | |
num_attention_heads: int = 16 | |
attention_head_dim: int = 88 | |
in_channels: Optional[int] = None | |
out_channels: Optional[int] = None | |
num_layers: int = 16 | |
dropout: float = 0.0 | |
norm_num_groups: int = 32 | |
cross_attention_dim: Optional[int] = None | |
attention_bias: bool = False | |
cfg: Config | |
def configure(self) -> None: | |
self.num_attention_heads = self.cfg.num_attention_heads | |
self.attention_head_dim = self.cfg.attention_head_dim | |
inner_dim = self.num_attention_heads * self.attention_head_dim | |
# Define input layers | |
self.norm = torch.nn.GroupNorm( | |
num_groups=self.cfg.norm_num_groups, | |
num_channels=self.cfg.in_channels, | |
eps=1e-6, | |
affine=True, | |
) | |
self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicBlock( | |
inner_dim, | |
kv_dim=self.cfg.cross_attention_dim, | |
num_heads=self.num_attention_heads, | |
qkv_bias=self.cfg.attention_bias, | |
proj_drop=self.cfg.dropout, | |
ff_drop=self.cfg.dropout, | |
) | |
for d in range(self.cfg.num_layers) | |
] | |
) | |
# 4. Define output layers | |
self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels) | |
def forward(self, hidden_states, encoder_hidden_states=None, **kwargs): | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
hidden_states = hidden_states.permute(0, 2, 1) | |
hidden_states = self.proj_in(hidden_states) | |
for block in self.transformer_blocks: | |
hidden_states = block(hidden_states, encoder_hidden_states) | |
hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous() | |
# TODO: do we really need to add the residual? | |
hidden_states = hidden_states + residual | |
return hidden_states | |
class FuseBlock(nn.Module): | |
""" | |
Fuse X in to Z with cross attention | |
""" | |
def __init__( | |
self, | |
dim_z: int, | |
dim_x: int, | |
num_heads: int = 16, | |
qkv_bias: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
ff_drop: float = 0.0, | |
norm_x_input: bool = True, | |
): | |
super().__init__() | |
self.norm_x_input = norm_x_input | |
if self.norm_x_input: | |
self.norm_x = nn.LayerNorm(dim_x) | |
self.attn = CrossAttention( | |
dim_z, | |
kv_dim=dim_x, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
) | |
self.norm_z1 = nn.LayerNorm(dim_z) | |
self.norm_z2 = nn.LayerNorm(dim_z) | |
self.ff = FeedForward(dim_z, dropout=ff_drop) | |
def forward(self, z, x): | |
# TODO: do we need to normalize x? | |
z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x) | |
z = z + self.ff(self.norm_z2(z)) | |
return z | |
def get_triplane_attention_mask(res): | |
N = 3 * res * res | |
attn_mask = torch.zeros(3, res, res, 3, res, res) | |
i, j = torch.meshgrid(torch.arange(res), torch.arange(res)) | |
attn_mask[0, i, j, 1, i, :] = 1.0 | |
attn_mask[0, i, j, 2, j, :] = 1.0 | |
attn_mask[1, i, j, 0, i, :] = 1.0 | |
attn_mask[1, i, j, 2, :, j] = 1.0 | |
attn_mask[2, i, j, 0, :, i] = 1.0 | |
attn_mask[2, i, j, 1, :, j] = 1.0 | |
attn_mask = attn_mask.bool() | |
attn_bias = torch.empty_like(attn_mask, dtype=torch.float) | |
attn_bias.masked_fill_(attn_mask, 0.0) | |
attn_bias.masked_fill_(~attn_mask, float("-inf")) | |
return attn_bias.reshape(N, N) | |
class TriplaneAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
resolution: int, | |
num_heads: int = 16, | |
qkv_bias: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
full_attention: bool = False, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wk = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wv = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = attn_drop | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.resolution = resolution | |
self.full_attention = full_attention | |
self.attn_mask = ( | |
get_triplane_attention_mask(resolution) if not full_attention else None | |
) | |
def forward(self, x): | |
B, N, C = x.shape | |
# [B, N, C] -> [B, N, H, C/H] | |
q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads) | |
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads) | |
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads) | |
# detokenize the planes | |
assert N == self.resolution**2 * 3 | |
attn_bias = ( | |
self.attn_mask.to(q) | |
.unsqueeze(0) | |
.unsqueeze(0) | |
.expand(B, self.num_heads, -1, -1) | |
if not self.full_attention | |
else None | |
) | |
# full attention | |
x = torch.nn.functional.scaled_dot_product_attention( | |
q.permute(0, 2, 1, 3), | |
k.permute(0, 2, 1, 3), | |
v.permute(0, 2, 1, 3), | |
attn_mask=attn_bias, | |
dropout_p=self.attn_drop, | |
scale=self.scale, | |
).permute(0, 2, 1, 3) | |
# [B, N_q, H, C/H] -> [B, N_q, C] | |
x = x.reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class TwoStreamBlock(nn.Module): | |
def __init__( | |
self, | |
dim_latent: int, | |
dim_input: int, | |
num_basic_blocks: int = 4, | |
num_heads: int = 16, | |
qkv_bias: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
ff_drop: float = 0.0, | |
norm_x_input: bool = True, | |
dim_cross: Optional[int] = None, | |
): | |
super().__init__() | |
# Define the fuse block that fuse the input into the latent | |
self.fuse_block_in = FuseBlock( | |
dim_latent, | |
dim_input, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
ff_drop=ff_drop, | |
norm_x_input=norm_x_input, | |
) | |
# Define the transformer block that process the latent | |
self.transformer_block = nn.ModuleList( | |
[ | |
BasicBlock( | |
dim_latent, | |
kv_dim=dim_cross, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
proj_drop=proj_drop, | |
ff_drop=ff_drop, | |
) | |
for _ in range(num_basic_blocks) | |
] | |
) | |
# Define the fuse block that fuse the latent into the input | |
self.fuse_block_out = FuseBlock( | |
dim_input, | |
dim_latent, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
ff_drop=ff_drop, | |
norm_x_input=norm_x_input, | |
) | |
def forward(self, latent, input, cross_input): | |
latent = self.fuse_block_in(latent, input) | |
for block in self.transformer_block: | |
latent = block(latent, cross_input) | |
input = self.fuse_block_out(input, latent) | |
return latent, input | |
class TwoStreamInterleaveTransformer(BaseModule): | |
class Config(BaseModule.Config): | |
num_attention_heads: int = 16 | |
attention_head_dim: int = 64 | |
raw_triplane_channels: int = 1024 | |
triplane_channels: int = 1024 | |
raw_image_channels: int = 1024 | |
num_latents: int = 1792 | |
num_blocks: int = 4 | |
num_basic_blocks: int = 3 | |
dropout: float = 0.0 | |
latent_init_std: float = 0.02 | |
norm_num_groups: int = 32 | |
attention_bias: bool = False | |
norm_x_input: bool = False | |
cross_attention_dim: int = 1024 | |
mix_latent: bool = True | |
cfg: Config | |
def configure(self) -> None: | |
self.mix_latent = self.cfg.mix_latent | |
# Define the dimensions | |
self.num_attention_heads = self.cfg.num_attention_heads | |
self.attention_head_dim = self.cfg.attention_head_dim | |
self.num_latents = self.cfg.num_latents | |
self.latent_dim = self.num_attention_heads * self.attention_head_dim | |
# Define input layers | |
if self.cfg.norm_num_groups > 0: | |
self.norm_triplane = torch.nn.GroupNorm( | |
num_groups=self.cfg.norm_num_groups, | |
num_channels=self.cfg.raw_triplane_channels, | |
eps=1e-6, | |
affine=True, | |
) | |
else: | |
self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels) | |
self.proj_triplane = nn.Linear( | |
self.cfg.raw_triplane_channels, self.cfg.triplane_channels | |
) | |
if self.mix_latent: | |
self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels) | |
self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim) | |
self.norm_latent = nn.LayerNorm(self.latent_dim) | |
self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim) | |
# Define the latents | |
self.latent_init = nn.Parameter( | |
torch.zeros(1, self.num_latents, self.latent_dim) | |
) | |
nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std) | |
# Define the transformer blocks | |
self.main_blocks = nn.ModuleList( | |
[ | |
TwoStreamBlock( | |
self.latent_dim, | |
self.cfg.triplane_channels, | |
num_basic_blocks=self.cfg.num_basic_blocks, | |
num_heads=self.num_attention_heads, | |
qkv_bias=self.cfg.attention_bias, | |
proj_drop=self.cfg.dropout, | |
ff_drop=self.cfg.dropout, | |
norm_x_input=self.cfg.norm_x_input, | |
dim_cross=self.cfg.cross_attention_dim, | |
) | |
for _ in range(self.cfg.num_blocks) | |
] | |
) | |
# 4. Define output layers | |
self.proj_out = nn.Linear( | |
self.cfg.triplane_channels, self.cfg.raw_triplane_channels | |
) | |
def forward(self, hidden_states, encoder_hidden_states, **kwargs): | |
# hidden_states: [B, triplane_dim, N_triplane] is triplane tokens | |
# encoder_hidden_states: [B, N_image, image_dim] is the image tokens | |
if isinstance(self.norm_triplane, nn.GroupNorm): | |
triplane_tokens = self.norm_triplane(hidden_states) | |
triplane_tokens = triplane_tokens.permute( | |
0, 2, 1 | |
) # [B, N_triplane, triplane_dim] | |
elif isinstance(self.norm_triplane, nn.LayerNorm): | |
triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1)) | |
else: | |
raise ValueError("Unknown normalization layer") | |
triplane_tokens = self.proj_triplane(triplane_tokens) | |
if self.mix_latent: | |
image_tokens = self.norm_image( | |
encoder_hidden_states | |
) # [B, N_image, image_dim] | |
image_tokens = self.proj_image(image_tokens) | |
init_latents = self.latent_init.expand( | |
hidden_states.shape[0], -1, -1 | |
) # [B, N_latent_init, latent_dim] | |
init_latents = self.norm_latent(init_latents) | |
init_latents = self.proj_latent(init_latents) | |
if self.mix_latent: | |
latent_tokens = torch.cat( | |
[image_tokens, init_latents], dim=1 | |
) # [B, N_latent, latent_dim] | |
else: | |
latent_tokens = init_latents | |
# forward the main blocks | |
for block in self.main_blocks: | |
latent_tokens, triplane_tokens = block( | |
latent_tokens, triplane_tokens, encoder_hidden_states | |
) | |
# project the triplane tokens back to the original dimension | |
triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous() | |
triplane_tokens = triplane_tokens + hidden_states | |
return triplane_tokens | |