mboss's picture
Initial commit
d945eeb
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from sf3d.models.utils import BaseModule
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states, scale: float = 1.0):
args = ()
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class CrossAttention(nn.Module):
def __init__(
self,
dim,
kv_dim=None,
num_heads=16,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
kv_dim = dim if not kv_dim else kv_dim
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias)
self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x_q, x_kv):
B, N_q, C = x_q.shape
B, N_kv, _ = x_kv.shape
# [B, N_q, C] -> [B, N_q, H, C/H]
q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads)
# [B, N_kv, C] -> [B, N_kv, H, C/H]
k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
# attention
x = torch.nn.functional.scaled_dot_product_attention(
q.permute(0, 2, 1, 3),
k.permute(0, 2, 1, 3),
v.permute(0, 2, 1, 3),
attn_mask=None,
dropout_p=self.attn_drop,
scale=self.scale,
).permute(0, 2, 1, 3)
# [B, N_q, H, C/H] -> [B, N_q, C]
x = x.reshape(B, N_q, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
act_fn = GEGLU(dim, inner_dim)
self.net = nn.ModuleList([])
self.net.append(act_fn)
self.net.append(nn.Dropout(dropout))
self.net.append(nn.Linear(inner_dim, dim_out))
def forward(self, x: torch.Tensor) -> torch.Tensor:
for module in self.net:
x = module(x)
return x
class BasicBlock(nn.Module):
def __init__(
self,
dim: int,
kv_dim: Optional[int] = None,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn1 = CrossAttention(
dim,
kv_dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm2 = nn.LayerNorm(dim)
self.attn2 = CrossAttention(
dim,
kv_dim=kv_dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm3 = nn.LayerNorm(dim)
self.ff = FeedForward(dim, dropout=ff_drop)
def forward(self, z, x):
z_norm = self.norm1(z)
z = z + self.attn1(z_norm, z_norm)
# TODO: do we need to have the second attention when x is None?
z_norm = self.norm2(z)
z = z + self.attn2(z_norm, x if x is not None else z_norm)
z_norm = self.norm3(z)
z = z + self.ff(z_norm)
return z
class SingleStreamTransformer(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 88
in_channels: Optional[int] = None
out_channels: Optional[int] = None
num_layers: int = 16
dropout: float = 0.0
norm_num_groups: int = 32
cross_attention_dim: Optional[int] = None
attention_bias: bool = False
cfg: Config
def configure(self) -> None:
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
inner_dim = self.num_attention_heads * self.attention_head_dim
# Define input layers
self.norm = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.in_channels,
eps=1e-6,
affine=True,
)
self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicBlock(
inner_dim,
kv_dim=self.cfg.cross_attention_dim,
num_heads=self.num_attention_heads,
qkv_bias=self.cfg.attention_bias,
proj_drop=self.cfg.dropout,
ff_drop=self.cfg.dropout,
)
for d in range(self.cfg.num_layers)
]
)
# 4. Define output layers
self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels)
def forward(self, hidden_states, encoder_hidden_states=None, **kwargs):
residual = hidden_states
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.proj_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states)
hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous()
# TODO: do we really need to add the residual?
hidden_states = hidden_states + residual
return hidden_states
class FuseBlock(nn.Module):
"""
Fuse X in to Z with cross attention
"""
def __init__(
self,
dim_z: int,
dim_x: int,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
norm_x_input: bool = True,
):
super().__init__()
self.norm_x_input = norm_x_input
if self.norm_x_input:
self.norm_x = nn.LayerNorm(dim_x)
self.attn = CrossAttention(
dim_z,
kv_dim=dim_x,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm_z1 = nn.LayerNorm(dim_z)
self.norm_z2 = nn.LayerNorm(dim_z)
self.ff = FeedForward(dim_z, dropout=ff_drop)
def forward(self, z, x):
# TODO: do we need to normalize x?
z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x)
z = z + self.ff(self.norm_z2(z))
return z
@torch.no_grad()
def get_triplane_attention_mask(res):
N = 3 * res * res
attn_mask = torch.zeros(3, res, res, 3, res, res)
i, j = torch.meshgrid(torch.arange(res), torch.arange(res))
attn_mask[0, i, j, 1, i, :] = 1.0
attn_mask[0, i, j, 2, j, :] = 1.0
attn_mask[1, i, j, 0, i, :] = 1.0
attn_mask[1, i, j, 2, :, j] = 1.0
attn_mask[2, i, j, 0, :, i] = 1.0
attn_mask[2, i, j, 1, :, j] = 1.0
attn_mask = attn_mask.bool()
attn_bias = torch.empty_like(attn_mask, dtype=torch.float)
attn_bias.masked_fill_(attn_mask, 0.0)
attn_bias.masked_fill_(~attn_mask, float("-inf"))
return attn_bias.reshape(N, N)
class TriplaneAttention(nn.Module):
def __init__(
self,
dim: int,
resolution: int,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
full_attention: bool = False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(dim, dim, bias=qkv_bias)
self.wv = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.resolution = resolution
self.full_attention = full_attention
self.attn_mask = (
get_triplane_attention_mask(resolution) if not full_attention else None
)
def forward(self, x):
B, N, C = x.shape
# [B, N, C] -> [B, N, H, C/H]
q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads)
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads)
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads)
# detokenize the planes
assert N == self.resolution**2 * 3
attn_bias = (
self.attn_mask.to(q)
.unsqueeze(0)
.unsqueeze(0)
.expand(B, self.num_heads, -1, -1)
if not self.full_attention
else None
)
# full attention
x = torch.nn.functional.scaled_dot_product_attention(
q.permute(0, 2, 1, 3),
k.permute(0, 2, 1, 3),
v.permute(0, 2, 1, 3),
attn_mask=attn_bias,
dropout_p=self.attn_drop,
scale=self.scale,
).permute(0, 2, 1, 3)
# [B, N_q, H, C/H] -> [B, N_q, C]
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TwoStreamBlock(nn.Module):
def __init__(
self,
dim_latent: int,
dim_input: int,
num_basic_blocks: int = 4,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
norm_x_input: bool = True,
dim_cross: Optional[int] = None,
):
super().__init__()
# Define the fuse block that fuse the input into the latent
self.fuse_block_in = FuseBlock(
dim_latent,
dim_input,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
ff_drop=ff_drop,
norm_x_input=norm_x_input,
)
# Define the transformer block that process the latent
self.transformer_block = nn.ModuleList(
[
BasicBlock(
dim_latent,
kv_dim=dim_cross,
num_heads=num_heads,
qkv_bias=qkv_bias,
proj_drop=proj_drop,
ff_drop=ff_drop,
)
for _ in range(num_basic_blocks)
]
)
# Define the fuse block that fuse the latent into the input
self.fuse_block_out = FuseBlock(
dim_input,
dim_latent,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
ff_drop=ff_drop,
norm_x_input=norm_x_input,
)
def forward(self, latent, input, cross_input):
latent = self.fuse_block_in(latent, input)
for block in self.transformer_block:
latent = block(latent, cross_input)
input = self.fuse_block_out(input, latent)
return latent, input
class TwoStreamInterleaveTransformer(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 64
raw_triplane_channels: int = 1024
triplane_channels: int = 1024
raw_image_channels: int = 1024
num_latents: int = 1792
num_blocks: int = 4
num_basic_blocks: int = 3
dropout: float = 0.0
latent_init_std: float = 0.02
norm_num_groups: int = 32
attention_bias: bool = False
norm_x_input: bool = False
cross_attention_dim: int = 1024
mix_latent: bool = True
cfg: Config
def configure(self) -> None:
self.mix_latent = self.cfg.mix_latent
# Define the dimensions
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
self.num_latents = self.cfg.num_latents
self.latent_dim = self.num_attention_heads * self.attention_head_dim
# Define input layers
if self.cfg.norm_num_groups > 0:
self.norm_triplane = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.raw_triplane_channels,
eps=1e-6,
affine=True,
)
else:
self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels)
self.proj_triplane = nn.Linear(
self.cfg.raw_triplane_channels, self.cfg.triplane_channels
)
if self.mix_latent:
self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels)
self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim)
self.norm_latent = nn.LayerNorm(self.latent_dim)
self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim)
# Define the latents
self.latent_init = nn.Parameter(
torch.zeros(1, self.num_latents, self.latent_dim)
)
nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std)
# Define the transformer blocks
self.main_blocks = nn.ModuleList(
[
TwoStreamBlock(
self.latent_dim,
self.cfg.triplane_channels,
num_basic_blocks=self.cfg.num_basic_blocks,
num_heads=self.num_attention_heads,
qkv_bias=self.cfg.attention_bias,
proj_drop=self.cfg.dropout,
ff_drop=self.cfg.dropout,
norm_x_input=self.cfg.norm_x_input,
dim_cross=self.cfg.cross_attention_dim,
)
for _ in range(self.cfg.num_blocks)
]
)
# 4. Define output layers
self.proj_out = nn.Linear(
self.cfg.triplane_channels, self.cfg.raw_triplane_channels
)
def forward(self, hidden_states, encoder_hidden_states, **kwargs):
# hidden_states: [B, triplane_dim, N_triplane] is triplane tokens
# encoder_hidden_states: [B, N_image, image_dim] is the image tokens
if isinstance(self.norm_triplane, nn.GroupNorm):
triplane_tokens = self.norm_triplane(hidden_states)
triplane_tokens = triplane_tokens.permute(
0, 2, 1
) # [B, N_triplane, triplane_dim]
elif isinstance(self.norm_triplane, nn.LayerNorm):
triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1))
else:
raise ValueError("Unknown normalization layer")
triplane_tokens = self.proj_triplane(triplane_tokens)
if self.mix_latent:
image_tokens = self.norm_image(
encoder_hidden_states
) # [B, N_image, image_dim]
image_tokens = self.proj_image(image_tokens)
init_latents = self.latent_init.expand(
hidden_states.shape[0], -1, -1
) # [B, N_latent_init, latent_dim]
init_latents = self.norm_latent(init_latents)
init_latents = self.proj_latent(init_latents)
if self.mix_latent:
latent_tokens = torch.cat(
[image_tokens, init_latents], dim=1
) # [B, N_latent, latent_dim]
else:
latent_tokens = init_latents
# forward the main blocks
for block in self.main_blocks:
latent_tokens, triplane_tokens = block(
latent_tokens, triplane_tokens, encoder_hidden_states
)
# project the triplane tokens back to the original dimension
triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous()
triplane_tokens = triplane_tokens + hidden_states
return triplane_tokens