File size: 18,160 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import cv2
import numpy as np
import torch
from skimage import filters
from sklearn.metrics.pairwise import euclidean_distances
import matplotlib.pyplot as plt
import seaborn as sns
from copy import deepcopy

# ------------------------------------------------------------------------------
# ----- Evaluation metrics for a pair of binary mask images (pred, target) -----
# ------------------------------------------------------------------------------


def get_accuracy(arr1, arr2):
    """pixel accuracy

    Args:
        arr1 (np.array)
        arr2 (np.array)
    """
    return (arr1 == arr2).sum() / arr1.size


def trimap(pred_im, gt_im, thickness=8):
    """Compute accuracy in a region of thickness around the contours
        for binary images (0-1 values)
    Args:
        pred_im (Image): Prediction
        gt_im (Image): Target
        thickness (int, optional): [description]. Defaults to 8.
    """
    W, H = gt_im.size
    contours, hierarchy = cv2.findContours(
        np.array(gt_im), mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_SIMPLE
    )
    mask_contour = np.zeros((H, W), dtype=np.int32)
    cv2.drawContours(
        mask_contour, contours, -1, (1), thickness=thickness, hierarchy=hierarchy
    )
    gt_contour = np.array(gt_im)[np.where(mask_contour > 0)]
    pred_contour = np.array(pred_im)[np.where(mask_contour > 0)]
    return get_accuracy(pred_contour, gt_contour)


def iou(pred_im, gt_im):
    """
    IoU for binary masks (0-1 values)

    Args:
        pred_im ([type]): [description]
        gt_im ([type]): [description]
    """
    pred = np.array(pred_im)
    gt = np.array(gt_im)
    intersection = (pred * gt).sum()
    union = (pred + gt).sum() - intersection
    return intersection / union


def f1_score(pred_im, gt_im):
    pred = np.array(pred_im)
    gt = np.array(gt_im)
    intersection = (pred * gt).sum()
    return 2 * intersection / (pred + gt).sum()


def accuracy(pred_im, gt_im):
    pred = np.array(pred_im)
    gt = np.array(gt_im)
    if len(gt_im.shape) == 4:
        assert gt_im.shape[1] == 1
        gt_im = gt_im[:, 0, :, :]
    if len(pred.shape) > len(gt_im.shape):
        pred = np.argmax(pred, axis=1)
    return float((pred == gt).sum()) / gt.size


def mIOU(pred, label, average="macro"):
    """
    Adapted from:
    https://stackoverflow.com/questions/62461379/multiclass-semantic-segmentation-model-evaluation

    Compute the mean IOU from pred and label tensors
    pred is a tensor N x C x H x W with logits (softmax will be applied)
    and label is a N x H  x W tensor with int labels per pixel

    this does the same as sklearn's jaccard_score function if you choose average="macro"
    Args:
        pred (torch.tensor): predicted logits
        label (torch.tensor): labels
        average: "macro" or "weighted"

    Returns:
        float: mIOU, can be nan
    """
    num_classes = pred.shape[-3]

    pred = torch.argmax(pred, dim=1).squeeze(1)
    present_iou_list = list()
    pred = pred.view(-1)
    label = label.view(-1)
    # Note: Following for loop goes from 0 to (num_classes-1)
    # and ignore_index is num_classes, thus ignore_index is
    # not considered in computation of IoU.
    interesting_classes = (
        [*range(num_classes)] if num_classes > 2 else [int(label.max().item())]
    )
    weights = []

    for sem_class in interesting_classes:
        pred_inds = pred == sem_class
        target_inds = label == sem_class
        if (target_inds.long().sum().item() > 0) or (pred_inds.long().sum().item() > 0):
            intersection_now = (pred_inds[target_inds]).long().sum().item()
            union_now = (
                pred_inds.long().sum().item()
                + target_inds.long().sum().item()
                - intersection_now
            )
            weights.append(pred_inds.long().sum().item())
            iou_now = float(intersection_now) / float(union_now)
            present_iou_list.append(iou_now)
    if not present_iou_list:
        return float("nan")
    elif average == "weighted":
        weighted_avg = np.sum(np.multiply(weights, present_iou_list) / np.sum(weights))
        return weighted_avg
    else:
        return np.mean(present_iou_list)


def masker_classification_metrics(
    pred, label, labels_dict={"cannot": 0, "must": 1, "may": 2}
):
    """
    Classification metrics for the masker, and the corresponding maps. If the
    predictions are soft, the errors are weighted accordingly. Metrics computed:

        tpr : float
            True positive rate

        tpt : float
            True positive total (divided by total population)

        tnr : float
            True negative rate

        tnt : float
            True negative total (divided by total population)

        fpr : float
            False positive rate: rate of predicted mask on cannot flood

        fpt : float
            False positive total (divided by total population)

        fnr : float
            False negative rate: rate of missed mask on must flood

        fnt : float
            False negative total (divided by total population)

        mnr : float
            "May" negative rate (labeled as "may", predicted as no-mask)

        mpr : float
            "May" positive rate (labeled as "may", predicted as mask)

        accuracy : float
            Accuracy

        error : float
            Error

        precision : float
            Precision, considering only cannot and must flood labels

        f05 : float
            F0.5 score, considering only cannot and must flood labels

        accuracy_must_may : float
            Accuracy considering only the must and may areas

    Parameters
    ----------
    pred : array-like
        Mask prediction

    label : array-like
        Mask ground truth labels

    labels_dict : dict
        A dictionary with the identifier of each class (cannot, must, may)

    Returns
    -------
    metrics_dict : dict
        A dictionary with metric name and value pairs

    maps_dict : dict
        A dictionary containing the metric maps
    """
    tp_map = pred * np.asarray(label == labels_dict["must"], dtype=int)
    tpr = np.sum(tp_map) / np.sum(label == labels_dict["must"])
    tpt = np.sum(tp_map) / np.prod(label.shape)
    tn_map = (1.0 - pred) * np.asarray(label == labels_dict["cannot"], dtype=int)
    tnr = np.sum(tn_map) / np.sum(label == labels_dict["cannot"])
    tnt = np.sum(tn_map) / np.prod(label.shape)
    fp_map = pred * np.asarray(label == labels_dict["cannot"], dtype=int)
    fpr = np.sum(fp_map) / np.sum(label == labels_dict["cannot"])
    fpt = np.sum(fp_map) / np.prod(label.shape)
    fn_map = (1.0 - pred) * np.asarray(label == labels_dict["must"], dtype=int)
    fnr = np.sum(fn_map) / np.sum(label == labels_dict["must"])
    fnt = np.sum(fn_map) / np.prod(label.shape)
    may_neg_map = (1.0 - pred) * np.asarray(label == labels_dict["may"], dtype=int)
    may_pos_map = pred * np.asarray(label == labels_dict["may"], dtype=int)
    mnr = np.sum(may_neg_map) / np.sum(label == labels_dict["may"])
    mpr = np.sum(may_pos_map) / np.sum(label == labels_dict["may"])
    accuracy = tpt + tnt
    error = fpt + fnt

    # Assertions
    assert np.isclose(tpr, 1.0 - fnr), "TPR: {:.4f}, FNR: {:.4f}".format(tpr, fnr)
    assert np.isclose(tnr, 1.0 - fpr), "TNR: {:.4f}, FPR: {:.4f}".format(tnr, fpr)
    assert np.isclose(mpr, 1.0 - mnr), "MPR: {:.4f}, MNR: {:.4f}".format(mpr, mnr)

    precision = np.sum(tp_map) / (np.sum(tp_map) + np.sum(fp_map) + 1e-9)
    beta = 0.5
    f05 = ((1 + beta ** 2) * precision * tpr) / (beta ** 2 * precision + tpr + 1e-9)
    accuracy_must_may = (np.sum(tp_map) + np.sum(may_neg_map)) / (
        np.sum(label == labels_dict["must"]) + np.sum(label == labels_dict["may"])
    )

    metrics_dict = {
        "tpr": tpr,
        "tpt": tpt,
        "tnr": tnr,
        "tnt": tnt,
        "fpr": fpr,
        "fpt": fpt,
        "fnr": fnr,
        "fnt": fnt,
        "mpr": mpr,
        "mnr": mnr,
        "accuracy": accuracy,
        "error": error,
        "precision": precision,
        "f05": f05,
        "accuracy_must_may": accuracy_must_may,
    }
    maps_dict = {
        "tp": tp_map,
        "tn": tn_map,
        "fp": fp_map,
        "fn": fn_map,
        "may_pos": may_pos_map,
        "may_neg": may_neg_map,
    }

    return metrics_dict, maps_dict


def pred_cannot(pred, label, label_cannot=0):
    """
    Metric for the masker: Computes false positive rate and its map. If the
    predictions are soft, the errors are weighted accordingly.

    Parameters
    ----------
    pred : array-like
        Mask prediction

    label : array-like
        Mask ground truth labels

    label_cannot : int
        The label index of "cannot flood"

    Returns
    -------
    fp_map : array-like
        The map of false positives: predicted mask on cannot flood

    fpr : float
        False positive rate: rate of predicted mask on cannot flood
    """
    fp_map = pred * np.asarray(label == label_cannot, dtype=int)
    fpr = np.sum(fp_map) / np.sum(label == label_cannot)
    return fp_map, fpr


def missed_must(pred, label, label_must=1):
    """
    Metric for the masker: Computes false negative rate and its map. If the
    predictions are soft, the errors are weighted accordingly.

    Parameters
    ----------
    pred : array-like
        Mask prediction

    label : array-like
        Mask ground truth labels

    label_must : int
        The label index of "must flood"

    Returns
    -------
    fn_map : array-like
        The map of false negatives: missed mask on must flood

    fnr : float
        False negative rate: rate of missed mask on must flood
    """
    fn_map = (1.0 - pred) * np.asarray(label == label_must, dtype=int)
    fnr = np.sum(fn_map) / np.sum(label == label_must)
    return fn_map, fnr


def may_flood(pred, label, label_may=2):
    """
    Metric for the masker: Computes "may" negative and "may" positive rates and their
    map. If the predictions are soft, the "errors" are weighted accordingly.

    Parameters
    ----------
    pred : array-like
        Mask prediction

    label : array-like
        Mask ground truth labels

    label_may : int
        The label index of "may flood"

    Returns
    -------
    may_neg_map : array-like
        The map of "may" negatives

    may_pos_map : array-like
        The map of "may" positives

    mnr : float
        "May" negative rate

    mpr : float
        "May" positive rate
    """
    may_neg_map = (1.0 - pred) * np.asarray(label == label_may, dtype=int)
    may_pos_map = pred * np.asarray(label == label_may, dtype=int)
    mnr = np.sum(may_neg_map) / np.sum(label == label_may)
    mpr = np.sum(may_pos_map) / np.sum(label == label_may)
    return may_neg_map, may_pos_map, mnr, mpr


def masker_metrics(pred, label, label_cannot=0, label_must=1):
    """
    Computes a set of metrics for the masker

    Parameters
    ----------
    pred : array-like
        Mask prediction

    label : array-like
        Mask ground truth labels

    label_must : int
        The label index of "must flood"

    label_cannot : int
        The label index of "cannot flood"

    Returns
    -------
    tpr : float
        True positive rate

    tnr : float
        True negative rate

    precision : float
        Precision, considering only cannot and must flood labels

    f1 : float
        F1 score, considering only cannot and must flood labels
    """
    tp_map = pred * np.asarray(label == label_must, dtype=int)
    tpr = np.sum(tp_map) / np.sum(label == label_must)
    tn_map = (1.0 - pred) * np.asarray(label == label_cannot, dtype=int)
    tnr = np.sum(tn_map) / np.sum(label == label_cannot)
    fp_map = pred * np.asarray(label == label_cannot, dtype=int)
    fn_map = (1.0 - pred) * np.asarray(label == label_must, dtype=int)  # noqa: F841
    precision = np.sum(tp_map) / (np.sum(tp_map) + np.sum(fp_map))
    f1 = 2 * (precision * tpr) / (precision + tpr)
    return tpr, tnr, precision, f1


def get_confusion_matrix(tpr, tnr, fpr, fnr, mpr, mnr):
    """
    Constructs the confusion matrix of a masker prediction over a set of samples

    Parameters
    ----------
    tpr : vector-like
        True positive rate

    tnr : vector-like
        True negative rate

    fpr : vector-like
        False positive rate

    fnr : vector-like
        False negative rate

    mpr : vector-like
        "May" positive rate

    mnr : vector-like
        "May" negative rate

    Returns
    -------
    confusion_matrix : 3x3 array
        Confusion matrix: [i, j] = [pred, true]
            | tnr fnr mnr |
            | fpr tpr mpr |
            | 0.  0,  0,  |

    confusion_matrix_std : 3x3 array
        Standard deviation of the confusion matrix
    """
    # Compute mean and standard deviations over all samples
    tpr_m = np.mean(tpr)
    tpr_s = np.std(tpr)
    tnr_m = np.mean(tnr)
    tnr_s = np.std(tnr)
    fpr_m = np.mean(fpr)
    fpr_s = np.std(fpr)
    fnr_m = np.mean(fnr)
    fnr_s = np.std(fnr)
    mpr_m = np.mean(mpr)
    mpr_s = np.std(mpr)
    mnr_m = np.mean(mnr)
    mnr_s = np.std(mnr)

    # Assertions
    assert np.isclose(tpr_m, 1.0 - fnr_m), "TPR: {:.4f}, FNR: {:.4f}".format(
        tpr_m, fnr_m
    )
    assert np.isclose(tnr_m, 1.0 - fpr_m), "TNR: {:.4f}, FPR: {:.4f}".format(
        tnr_m, fpr_m
    )
    assert np.isclose(mpr_m, 1.0 - mnr_m), "MPR: {:.4f}, MNR: {:.4f}".format(
        mpr_m, mnr_m
    )

    # Fill confusion matrix
    confusion_matrix = np.zeros((3, 3))
    confusion_matrix[0, 0] = tnr_m
    confusion_matrix[0, 1] = fnr_m
    confusion_matrix[0, 2] = mnr_m
    confusion_matrix[1, 0] = fpr_m
    confusion_matrix[1, 1] = tpr_m
    confusion_matrix[1, 2] = mpr_m
    confusion_matrix[2, 2] = 0.0

    # Standard deviation
    confusion_matrix_std = np.zeros((3, 3))
    confusion_matrix_std[0, 0] = tnr_s
    confusion_matrix_std[0, 1] = fnr_s
    confusion_matrix_std[0, 2] = mnr_s
    confusion_matrix_std[1, 0] = fpr_s
    confusion_matrix_std[1, 1] = tpr_s
    confusion_matrix_std[1, 2] = mpr_s
    confusion_matrix_std[2, 2] = 0.0
    return confusion_matrix, confusion_matrix_std


def edges_coherence_std_min(pred, label, label_must=1, bin_th=0.5):
    """
    The standard deviation of the minimum distance between the edge of the prediction
    and the edge of the "must flood" label.

    Parameters
    ----------
    pred : array-like
        Mask prediction

    label : array-like
        Mask ground truth labels

    label_must : int
        The label index of "must flood"

    bin_th : float
        The threshold for the binarization of the prediction

    Returns
    -------
    metric : float
        The value of the metric

    pred_edge : array-like
        The edges images of the prediction, for visualization

    label_edge : array-like
        The edges images of the "must flood" label, for visualization
    """
    # Keep must flood label only
    label = deepcopy(label)
    label[label != label_must] = -1
    label[label == label_must] = 1
    label[label != label_must] = 0
    label = np.asarray(label, dtype=float)

    # Binarize prediction
    pred = np.asarray(pred > bin_th, dtype=float)

    # Compute edges
    pred = filters.sobel(pred)
    label = filters.sobel(label)

    # Location of edges
    pred_coord = np.argwhere(pred > 0)
    label_coord = np.argwhere(label > 0)

    # Handle blank predictions
    if pred_coord.shape[0] == 0:
        return 1.0, pred, label

    # Normalized pairwise distances between pred and label
    dist_mat = np.divide(euclidean_distances(pred_coord, label_coord), pred.shape[0])

    # Standard deviation of the minimum distance from pred to label
    edge_coherence = np.std(np.min(dist_mat, axis=1))

    return edge_coherence, pred, label


def boxplot_metric(
    output_filename,
    df,
    metric,
    dict_metrics,
    do_stripplot=False,
    dict_models=None,
    dpi=300,
    **snskwargs
):
    f = plt.figure(dpi=dpi)

    if do_stripplot:
        ax = sns.boxplot(x="model", y=metric, data=df, fliersize=0.0, **snskwargs)
        ax = sns.stripplot(
            x="model", y=metric, data=df, size=2.0, color="gray", **snskwargs
        )
    else:
        ax = sns.boxplot(x="model", y=metric, data=df, **snskwargs)

    # Set axes labels
    ax.set_xlabel("Models", rotation=0, fontsize="medium")
    ax.set_ylabel(dict_metrics[metric], rotation=90, fontsize="medium")

    # Spines
    sns.despine(left=True, bottom=True)

    # X-Tick labels
    if dict_models:
        xticklabels = [dict_models[t.get_text()] for t in ax.get_xticklabels()]
        ax.set_xticklabels(
            xticklabels,
            rotation=20,
            verticalalignment="top",
            horizontalalignment="right",
            fontsize="xx-small",
        )

    f.savefig(
        output_filename,
        dpi=f.dpi,
        bbox_inches="tight",
        facecolor="white",
        transparent=False,
    )
    f.clear()
    plt.close(f)


def clustermap_metric(
    output_filename,
    df,
    metric,
    dict_metrics,
    method="average",
    cluster_metric="euclidean",
    dict_models=None,
    dpi=300,
    **snskwargs
):
    ax_grid = sns.clustermap(data=df, method=method, metric=cluster_metric, **snskwargs)
    ax_heatmap = ax_grid.ax_heatmap
    ax_cbar = ax_grid.ax_cbar

    # Set axes labels
    ax_heatmap.set_xlabel("Models", rotation=0, fontsize="medium")
    ax_heatmap.set_ylabel("Images", rotation=90, fontsize="medium")

    # Set title
    ax_cbar.set_title(dict_metrics[metric], rotation=0, fontsize="x-large")

    # X-Tick labels
    if dict_models:
        xticklabels = [dict_models[t.get_text()] for t in ax_heatmap.get_xticklabels()]
        ax_heatmap.set_xticklabels(
            xticklabels,
            rotation=20,
            verticalalignment="top",
            horizontalalignment="right",
            fontsize="small",
        )

    ax_grid.fig.savefig(
        output_filename,
        dpi=dpi,
        bbox_inches="tight",
        facecolor="white",
        transparent=False,
    )
    ax_grid.fig.clear()
    plt.close(ax_grid.fig)