Spaces:
Runtime error
Runtime error
File size: 31,457 Bytes
ce190ee 9a7001e ce190ee cd31093 ce190ee cd31093 ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
"""All non-tensor utils
"""
import contextlib
import datetime
import json
import os
import re
import shutil
import subprocess
import time
import traceback
from os.path import expandvars
from pathlib import Path
from typing import Any, List, Optional, Union
from uuid import uuid4
import numpy as np
import torch
import yaml
from addict import Dict
from comet_ml import Experiment
comet_kwargs = {
"auto_metric_logging": False,
"parse_args": True,
"log_env_gpu": True,
"log_env_cpu": True,
"display_summary_level": 0,
}
IMG_EXTENSIONS = set(
[".jpg", ".JPG", ".jpeg", ".JPEG", ".png", ".PNG", ".ppm", ".PPM", ".bmp", ".BMP"]
)
def resolve(path):
"""
fully resolve a path:
resolve env vars ($HOME etc.) -> expand user (~) -> make absolute
Returns:
pathlib.Path: resolved absolute path
"""
return Path(expandvars(str(path))).expanduser().resolve()
def copy_run_files(opts: Dict) -> None:
"""
Copy the opts's sbatch_file to output_path
Args:
opts (addict.Dict): options
"""
if opts.sbatch_file:
p = resolve(opts.sbatch_file)
if p.exists():
o = resolve(opts.output_path)
if o.exists():
shutil.copyfile(p, o / p.name)
if opts.exp_file:
p = resolve(opts.exp_file)
if p.exists():
o = resolve(opts.output_path)
if o.exists():
shutil.copyfile(p, o / p.name)
def merge(
source: Union[dict, Dict], destination: Union[dict, Dict]
) -> Union[dict, Dict]:
"""
run me with nosetests --with-doctest file.py
>>> a = { 'first' : { 'all_rows' : { 'pass' : 'dog', 'number' : '1' } } }
>>> b = { 'first' : { 'all_rows' : { 'fail' : 'cat', 'number' : '5' } } }
>>> merge(b, a) == {
'first' : {
'all_rows' : { '
pass' : 'dog',
'fail' : 'cat',
'number' : '5'
}
}
}
True
"""
for key, value in source.items():
try:
if isinstance(value, dict):
# get node or create one
node = destination.setdefault(key, {})
merge(value, node)
else:
if isinstance(destination, dict):
destination[key] = value
else:
destination = {key: value}
except TypeError as e:
print(traceback.format_exc())
print(">>>", source)
print(">>>", destination)
print(">>>", key)
print(">>>", value)
raise Exception(e)
return destination
def load_opts(
path: Optional[Union[str, Path]] = None,
default: Optional[Union[str, Path, dict, Dict]] = None,
commandline_opts: Optional[Union[Dict, dict]] = None,
) -> Dict:
"""Loadsize a configuration Dict from 2 files:
1. default files with shared values across runs and users
2. an overriding file with run- and user-specific values
Args:
path (pathlib.Path): where to find the overriding configuration
default (pathlib.Path, optional): Where to find the default opts.
Defaults to None. In which case it is assumed to be a default config
which needs processing such as setting default values for lambdas and gen
fields
Returns:
addict.Dict: options dictionnary, with overwritten default values
"""
if path is None and default is None:
path = (
resolve(Path(__file__)).parent.parent
/ "shared"
/ "trainer"
/ "defaults.yaml"
)
if path:
path = resolve(path)
if default is None:
default_opts = {}
else:
if isinstance(default, (str, Path)):
with open(default, "r") as f:
default_opts = yaml.safe_load(f)
else:
default_opts = dict(default)
if path is None:
overriding_opts = {}
else:
with open(path, "r") as f:
overriding_opts = yaml.safe_load(f) or {}
opts = Dict(merge(overriding_opts, default_opts))
if commandline_opts is not None and isinstance(commandline_opts, dict):
opts = Dict(merge(commandline_opts, opts))
if opts.train.kitti.pretrained:
assert "kitti" in opts.data.files.train
assert "kitti" in opts.data.files.val
assert opts.train.kitti.epochs > 0
opts.domains = []
if "m" in opts.tasks or "s" in opts.tasks or "d" in opts.tasks:
opts.domains.extend(["r", "s"])
if "p" in opts.tasks:
opts.domains.append("rf")
if opts.train.kitti.pretrain:
opts.domains.append("kitti")
opts.domains = list(set(opts.domains))
if "s" in opts.tasks:
if opts.gen.encoder.architecture != opts.gen.s.architecture:
print(
"WARNING: segmentation encoder and decoder architectures do not match"
)
print(
"Encoder: {} <> Decoder: {}".format(
opts.gen.encoder.architecture, opts.gen.s.architecture
)
)
if opts.gen.m.use_spade:
if "d" not in opts.tasks or "s" not in opts.tasks:
raise ValueError(
"opts.gen.m.use_spade is True so tasks MUST include"
+ "both d and s, but received {}".format(opts.tasks)
)
if opts.gen.d.classify.enable:
raise ValueError(
"opts.gen.m.use_spade is True but using D as a classifier"
+ " which is a non-implemented combination"
)
if opts.gen.s.depth_feat_fusion is True or opts.gen.s.depth_dada_fusion is True:
opts.gen.s.use_dada = True
events_path = (
resolve(Path(__file__)).parent.parent / "shared" / "trainer" / "events.yaml"
)
if events_path.exists():
with events_path.open("r") as f:
events_dict = yaml.safe_load(f)
events_dict = Dict(events_dict)
opts.events = events_dict
return set_data_paths(opts)
def set_data_paths(opts: Dict) -> Dict:
"""Update the data files paths in data.files.train and data.files.val
from data.files.base
Args:
opts (addict.Dict): options
Returns:
addict.Dict: updated options
"""
for mode in ["train", "val"]:
for domain in opts.data.files[mode]:
if opts.data.files.base and not opts.data.files[mode][domain].startswith(
"/"
):
opts.data.files[mode][domain] = str(
Path(opts.data.files.base) / opts.data.files[mode][domain]
)
assert Path(
opts.data.files[mode][domain]
).exists(), "Cannot find {}".format(str(opts.data.files[mode][domain]))
return opts
def load_test_opts(test_file_path: str = "config/trainer/local_tests.yaml") -> Dict:
"""Returns the special opts set up for local tests
Args:
test_file_path (str, optional): Name of the file located in config/
Defaults to "local_tests.yaml".
Returns:
addict.Dict: Opts loaded from defaults.yaml and updated from test_file_path
"""
return load_opts(
Path(__file__).parent.parent / f"{test_file_path}",
default=Path(__file__).parent.parent / "shared/trainer/defaults.yaml",
)
def get_git_revision_hash() -> str:
"""Get current git hash the code is run from
Returns:
str: git hash
"""
try:
return subprocess.check_output(["git", "rev-parse", "HEAD"]).decode().strip()
except Exception as e:
return str(e)
def get_git_branch() -> str:
"""Get current git branch name
Returns:
str: git branch name
"""
try:
return (
subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"])
.decode()
.strip()
)
except Exception as e:
return str(e)
def kill_job(id: Union[int, str]) -> None:
subprocess.check_output(["scancel", str(id)])
def write_hash(path: Union[str, Path]) -> None:
hash_code = get_git_revision_hash()
with open(path, "w") as f:
f.write(hash_code)
def shortuid():
return str(uuid4()).split("-")[0]
def datenowshort():
"""
>>> a = str(datetime.datetime.now())
>>> print(a)
'2021-02-25 11:34:50.188072'
>>> print(a[5:].split(".")[0].replace(" ", "_"))
'02-25_11:35:41'
Returns:
str: month-day_h:m:s
"""
return str(datetime.datetime.now())[5:].split(".")[0].replace(" ", "_")
def get_increased_path(path: Union[str, Path], use_date: bool = False) -> Path:
"""Returns an increased path: if dir exists, returns `dir (1)`.
If `dir (i)` exists, returns `dir (max(i) + 1)`
get_increased_path("test").mkdir() creates `test/`
then
get_increased_path("test").mkdir() creates `test (1)/`
etc.
if `test (3)/` exists but not `test (2)/`, `test (4)/` is created so that indexes
always increase
Args:
path (str or pathlib.Path): the file/directory which may already exist and would
need to be increased
Returns:
pathlib.Path: increased path
"""
fp = resolve(path)
if not fp.exists():
return fp
if fp.is_file():
if not use_date:
while fp.exists():
fp = fp.parent / f"{fp.stem}--{shortuid()}{fp.suffix}"
return fp
else:
while fp.exists():
time.sleep(0.5)
fp = fp.parent / f"{fp.stem}--{datenowshort()}{fp.suffix}"
return fp
if not use_date:
while fp.exists():
fp = fp.parent / f"{fp.name}--{shortuid()}"
return fp
else:
while fp.exists():
time.sleep(0.5)
fp = fp.parent / f"{fp.name}--{datenowshort()}"
return fp
# vals = []
# for n in fp.parent.glob("{}*".format(fp.stem)):
# if re.match(r".+\(\d+\)", str(n.name)) is not None:
# name = str(n.name)
# start = name.index("(")
# end = name.index(")")
# vals.append(int(name[start + 1 : end]))
# if vals:
# ext = " ({})".format(max(vals) + 1)
# elif fp.exists():
# ext = " (1)"
# else:
# ext = ""
# return fp.parent / (fp.stem + ext + fp.suffix)
def env_to_path(path: str) -> str:
"""Transorms an environment variable mention in a json
into its actual value. E.g. $HOME/clouds -> /home/vsch/clouds
Args:
path (str): path potentially containing the env variable
"""
path_elements = path.split("/")
new_path = []
for el in path_elements:
if "$" in el:
new_path.append(os.environ[el.replace("$", "")])
else:
new_path.append(el)
return "/".join(new_path)
def flatten_opts(opts: Dict) -> dict:
"""Flattens a multi-level addict.Dict or native dictionnary into a single
level native dict with string keys representing the keys sequence to reach
a value in the original argument.
d = addict.Dict()
d.a.b.c = 2
d.a.b.d = 3
d.a.e = 4
d.f = 5
flatten_opts(d)
>>> {
"a.b.c": 2,
"a.b.d": 3,
"a.e": 4,
"f": 5,
}
Args:
opts (addict.Dict or dict): addict dictionnary to flatten
Returns:
dict: flattened dictionnary
"""
values_list = []
def p(d, prefix="", vals=[]):
for k, v in d.items():
if isinstance(v, (Dict, dict)):
p(v, prefix + k + ".", vals)
elif isinstance(v, list):
if v and isinstance(v[0], (Dict, dict)):
for i, m in enumerate(v):
p(m, prefix + k + "." + str(i) + ".", vals)
else:
vals.append((prefix + k, str(v)))
else:
if isinstance(v, Path):
v = str(v)
vals.append((prefix + k, v))
p(opts, vals=values_list)
return dict(values_list)
def get_comet_rest_api_key(
path_to_config_file: Optional[Union[str, Path]] = None
) -> str:
"""Gets a comet.ml rest_api_key in the following order:
* config file specified as argument
* environment variable
* .comet.config file in the current working diretory
* .comet.config file in your home
config files must have a line like `rest_api_key=<some api key>`
Args:
path_to_config_file (str or pathlib.Path, optional): config_file to use.
Defaults to None.
Raises:
ValueError: can't find a file
ValueError: can't find the key in a file
Returns:
str: your comet rest_api_key
"""
if "COMET_REST_API_KEY" in os.environ and path_to_config_file is None:
return os.environ["COMET_REST_API_KEY"]
if path_to_config_file is not None:
p = resolve(path_to_config_file)
else:
p = Path() / ".comet.config"
if not p.exists():
p = Path.home() / ".comet.config"
if not p.exists():
raise ValueError("Unable to find your COMET_REST_API_KEY")
with p.open("r") as f:
for keys in f:
if "rest_api_key" in keys:
return keys.strip().split("=")[-1].strip()
raise ValueError("Unable to find your COMET_REST_API_KEY in {}".format(str(p)))
def get_files(dirName: str) -> list:
# create a list of file and sub directories
files = sorted(os.listdir(dirName))
all_files = list()
for entry in files:
fullPath = os.path.join(dirName, entry)
if os.path.isdir(fullPath):
all_files = all_files + get_files(fullPath)
else:
all_files.append(fullPath)
return all_files
def make_json_file(
tasks: List[str],
addresses: List[str], # for windows user, use "\\" instead of using "/"
json_names: List[str] = ["train_jsonfile.json", "val_jsonfile.json"],
splitter: str = "/",
pourcentage_val: float = 0.15,
) -> None:
"""
How to use it?
e.g.
make_json_file(['x','m','d'], [
'/network/tmp1/ccai/data/munit_dataset/trainA_size_1200/',
'/network/tmp1/ccai/data/munit_dataset/seg_trainA_size_1200/',
'/network/tmp1/ccai/data/munit_dataset/trainA_megadepth_resized/'
], ["train_r.json", "val_r.json"])
Args:
tasks (list): the list of image type like 'x', 'm', 'd', etc.
addresses (list): the list of the corresponding address of the
image type mentioned in tasks
json_names (list): names for the json files, train being first
(e.g. : ["train_r.json", "val_r.json"])
splitter (str, optional): The path separator for the current OS.
Defaults to '/'.
pourcentage_val: pourcentage of files to go in validation set
"""
assert len(tasks) == len(addresses), "keys and addresses must have the same length!"
files = [get_files(addresses[j]) for j in range(len(tasks))]
n_files_val = int(pourcentage_val * len(files[0]))
n_files_train = len(files[0]) - n_files_val
filenames = [files[0][:n_files_train], files[0][-n_files_val:]]
file_address_map = {
tasks[j]: {
".".join(file.split(splitter)[-1].split(".")[:-1]): file
for file in files[j]
}
for j in range(len(tasks))
}
# The tasks of the file_address_map are like 'x', 'm', 'd'...
# The values of the file_address_map are a dictionary whose tasks are the
# filenames without extension whose values are the path of the filename
# e.g. file_address_map =
# {'x': {'A': 'path/to/trainA_size_1200/A.png', ...},
# 'm': {'A': 'path/to/seg_trainA_size_1200/A.jpg',...}
# 'd': {'A': 'path/to/trainA_megadepth_resized/A.bmp',...}
# ...}
for i, json_name in enumerate(json_names):
dicts = []
for j in range(len(filenames[i])):
file = filenames[i][j]
filename = file.split(splitter)[-1] # the filename with 'x' extension
filename_ = ".".join(
filename.split(".")[:-1]
) # the filename without extension
tmp_dict = {}
for k in range(len(tasks)):
tmp_dict[tasks[k]] = file_address_map[tasks[k]][filename_]
dicts.append(tmp_dict)
with open(json_name, "w", encoding="utf-8") as outfile:
json.dump(dicts, outfile, ensure_ascii=False)
def append_task_to_json(
path_to_json: Union[str, Path],
path_to_new_json: Union[str, Path],
path_to_new_images_dir: Union[str, Path],
new_task_name: str,
):
"""Add all files for a task to an existing json file by creating a new json file
in the specified path.
Assumes that the files for the new task have exactly the same names as the ones
for the other tasks
Args:
path_to_json: complete path to the json file to modify
path_to_new_json: complete path to the new json file to be created
path_to_new_images_dir: complete path of the directory where to find the
images for the new task
new_task_name: name of the new task
e.g:
append_json(
"/network/tmp1/ccai/data/climategan/seg/train_r.json",
"/network/tmp1/ccai/data/climategan/seg/train_r_new.json"
"/network/tmp1/ccai/data/munit_dataset/trainA_seg_HRNet/unity_labels",
"s",
)
"""
ims_list = None
if path_to_json:
path_to_json = Path(path_to_json).resolve()
with open(path_to_json, "r") as f:
ims_list = json.load(f)
files = get_files(path_to_new_images_dir)
if ims_list is None:
raise ValueError(f"Could not find the list in {path_to_json}")
new_ims_list = [None] * len(ims_list)
for i, im_dict in enumerate(ims_list):
new_ims_list[i] = {}
for task, path in im_dict.items():
new_ims_list[i][task] = path
for i, im_dict in enumerate(ims_list):
for task, path in im_dict.items():
file_name = os.path.splitext(path)[0] # removes extension
file_name = file_name.rsplit("/", 1)[-1] # only the file_name
file_found = False
for file_path in files:
if file_name in file_path:
file_found = True
new_ims_list[i][new_task_name] = file_path
break
if file_found:
break
else:
print("Error! File ", file_name, "not found in directory!")
return
with open(path_to_new_json, "w", encoding="utf-8") as f:
json.dump(new_ims_list, f, ensure_ascii=False)
def sum_dict(dict1: Union[dict, Dict], dict2: Union[Dict, dict]) -> Union[dict, Dict]:
"""Add dict2 into dict1"""
for k, v in dict2.items():
if not isinstance(v, dict):
dict1[k] += v
else:
sum_dict(dict1[k], dict2[k])
return dict1
def div_dict(dict1: Union[dict, Dict], div_by: float) -> dict:
"""Divide elements of dict1 by div_by"""
for k, v in dict1.items():
if not isinstance(v, dict):
dict1[k] /= div_by
else:
div_dict(dict1[k], div_by)
return dict1
def comet_id_from_url(url: str) -> Optional[str]:
"""
Get comet exp id from its url:
https://www.comet.ml/vict0rsch/climategan/2a1a4a96afe848218c58ac4e47c5375f
-> 2a1a4a96afe848218c58ac4e47c5375f
Args:
url (str): comet exp url
Returns:
str: comet exp id
"""
try:
ids = url.split("/")
ids = [i for i in ids if i]
return ids[-1]
except Exception:
return None
@contextlib.contextmanager
def temp_np_seed(seed: Optional[int]) -> None:
"""
Set temporary numpy seed:
with temp_np_seed(123):
np.random.permutation(3)
Args:
seed (int): temporary numpy seed
"""
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
def get_display_indices(opts: Dict, domain: str, length: int) -> list:
"""
Compute the index of images to use for comet logging:
if opts.comet.display_indices is an int, and domain is real:
return range(int)
if opts.comet.display_indices is an int, and domain is sim:
return permutation(length)[:int]
if opts.comet.display_indices is a list:
return list
otherwise return []
Args:
opts (addict.Dict): options
domain (str): domain for those indices
length (int): length of dataset for the permutation
Returns:
list(int): The indices to display
"""
if domain == "rf":
dsize = max([opts.comet.display_size, opts.train.fid.get("n_images", 0)])
else:
dsize = opts.comet.display_size
if dsize > length:
print(
f"Warning: dataset is smaller ({length} images) "
+ f"than required display indices ({dsize})."
+ f" Selecting {length} images."
)
display_indices = []
assert isinstance(dsize, (int, list)), "Unknown display size {}".format(dsize)
if isinstance(dsize, int):
assert dsize >= 0, "Display size cannot be < 0"
with temp_np_seed(123):
display_indices = list(np.random.permutation(length)[:dsize])
elif isinstance(dsize, list):
display_indices = dsize
if not display_indices:
print("Warning: no display indices (utils.get_display_indices)")
return display_indices
def get_latest_path(path: Union[str, Path]) -> Path:
"""
Get the file/dir with largest increment i as `file (i).ext`
Args:
path (str or pathlib.Path): base pattern
Returns:
Path: path found
"""
p = Path(path).resolve()
s = p.stem
e = p.suffix
files = list(p.parent.glob(f"{s}*(*){e}"))
indices = list(p.parent.glob(f"{s}*(*){e}"))
indices = list(map(lambda f: f.name, indices))
indices = list(map(lambda x: re.findall(r"\((.*?)\)", x)[-1], indices))
indices = list(map(int, indices))
if not indices:
f = p
else:
f = files[np.argmax(indices)]
return f
def get_existing_jobID(output_path: Path) -> str:
"""
If the opts in output_path have a jobID, return it. Else, return None
Args:
output_path (pathlib.Path | str): where to look
Returns:
str | None: jobid
"""
op = Path(output_path)
if not op.exists():
return
opts_path = get_latest_path(op / "opts.yaml")
if not opts_path.exists():
return
with opts_path.open("r") as f:
opts = yaml.safe_load(f)
jobID = opts.get("jobID", None)
return jobID
def find_existing_training(opts: Dict) -> Optional[Path]:
"""
Looks in all directories like output_path.parent.glob(output_path.name*)
and compares the logged slurm job id with the current opts.jobID
If a match is found, the training should automatically continue in the
matching output directory
If no match is found, this is a new job and it should have a new output path
Args:
opts (Dict): trainer's options
Returns:
Optional[Path]: a path if a matchin jobID is found, None otherwise
"""
if opts.jobID is None:
print("WARNING: current JOBID is None")
return
print("---------- Current job id:", opts.jobID)
path = Path(opts.output_path).resolve()
parent = path.parent
name = path.name
try:
similar_dirs = [p.resolve() for p in parent.glob(f"{name}*") if p.is_dir()]
for sd in similar_dirs:
candidate_jobID = get_existing_jobID(sd)
if candidate_jobID is not None and str(opts.jobID) == str(candidate_jobID):
print(f"Found matching job id in {sd}\n")
return sd
print("Did not find a matching job id in \n {}\n".format(str(similar_dirs)))
except Exception as e:
print("ERROR: Could not resume (find_existing_training)", e)
def pprint(*args: List[Any]):
"""
Prints *args within a box of "=" characters
"""
txt = " ".join(map(str, args))
col = "====="
space = " "
head_size = 2
header = "\n".join(["=" * (len(txt) + 2 * (len(col) + len(space)))] * head_size)
empty = "{}{}{}{}{}".format(col, space, " " * (len(txt)), space, col)
print()
print(header)
print(empty)
print("{}{}{}{}{}".format(col, space, txt, space, col))
print(empty)
print(header)
print()
def get_existing_comet_id(path: str) -> Optional[str]:
"""
Returns the id of the existing comet experiment stored in path
Args:
path (str): Output pat where to look for the comet exp
Returns:
Optional[str]: comet exp's ID if any was found
"""
comet_previous_path = get_latest_path(Path(path) / "comet_url.txt")
if comet_previous_path.exists():
with comet_previous_path.open("r") as f:
url = f.read().strip()
return comet_id_from_url(url)
def get_latest_opts(path):
"""
get latest opts dumped in path if they look like *opts*.yaml
and were increased as
opts.yaml < opts (1).yaml < opts (2).yaml etc.
Args:
path (str or pathlib.Path): where to look for opts
Raises:
ValueError: If no match for *opts*.yaml is found
Returns:
addict.Dict: loaded opts
"""
path = Path(path)
opts = get_latest_path(path / "opts.yaml")
assert opts.exists()
with opts.open("r") as f:
opts = Dict(yaml.safe_load(f))
events_path = Path(__file__).parent.parent / "shared" / "trainer" / "events.yaml"
if events_path.exists():
with events_path.open("r") as f:
events_dict = yaml.safe_load(f)
events_dict = Dict(events_dict)
opts.events = events_dict
return opts
def text_to_array(text, width=640, height=40):
"""
Creates a numpy array of shape height x width x 3 with
text written on it using PIL
Args:
text (str): text to write
width (int, optional): Width of the resulting array. Defaults to 640.
height (int, optional): Height of the resulting array. Defaults to 40.
Returns:
np.ndarray: Centered text
"""
from PIL import Image, ImageDraw, ImageFont
img = Image.new("RGB", (width, height), (255, 255, 255))
try:
font = ImageFont.truetype("UnBatang.ttf", 25)
except OSError:
font = ImageFont.load_default()
d = ImageDraw.Draw(img)
text_width, text_height = d.textsize(text)
h = 40 // 2 - 3 * text_height // 2
w = width // 2 - text_width
d.text((w, h), text, font=font, fill=(30, 30, 30))
return np.array(img)
def all_texts_to_array(texts, width=640, height=40):
"""
Creates an array of texts, each of height and width specified
by the args, concatenated along their width dimension
Args:
texts (list(str)): List of texts to concatenate
width (int, optional): Individual text's width. Defaults to 640.
height (int, optional): Individual text's height. Defaults to 40.
Returns:
list: len(texts) text arrays with dims height x width x 3
"""
return [text_to_array(text, width, height) for text in texts]
class Timer:
def __init__(self, name="", store=None, precision=3, ignore=False, cuda=None):
self.name = name
self.store = store
self.precision = precision
self.ignore = ignore
self.cuda = cuda if cuda is not None else torch.cuda.is_available()
if self.cuda:
self._start_event = torch.cuda.Event(enable_timing=True)
self._end_event = torch.cuda.Event(enable_timing=True)
def format(self, n):
return f"{n:.{self.precision}f}"
def __enter__(self):
"""Start a new timer as a context manager"""
if self.cuda:
self._start_event.record()
else:
self._start_time = time.perf_counter()
return self
def __exit__(self, *exc_info):
"""Stop the context manager timer"""
if self.ignore:
return
if self.cuda:
self._end_event.record()
torch.cuda.synchronize()
new_time = self._start_event.elapsed_time(self._end_event) / 1000
else:
t = time.perf_counter()
new_time = t - self._start_time
if self.store is not None:
assert isinstance(self.store, list)
self.store.append(new_time)
if self.name:
print(f"[{self.name}] Elapsed time: {self.format(new_time)}")
def get_loader_output_shape_from_opts(opts):
transforms = opts.data.transforms
t = None
for t in transforms[::-1]:
if t.name == "resize":
break
assert t is not None
if isinstance(t.new_size, Dict):
return {
task: (
t.new_size.get(task, t.new_size.default),
t.new_size.get(task, t.new_size.default),
)
for task in opts.tasks + ["x"]
}
assert isinstance(t.new_size, int)
new_size = (t.new_size, t.new_size)
return {task: new_size for task in opts.tasks + ["x"]}
def find_target_size(opts, task):
target_size = None
if isinstance(opts.data.transforms[-1].new_size, int):
target_size = opts.data.transforms[-1].new_size
else:
if task in opts.data.transforms[-1].new_size:
target_size = opts.data.transforms[-1].new_size[task]
else:
assert "default" in opts.data.transforms[-1].new_size
target_size = opts.data.transforms[-1].new_size["default"]
return target_size
def to_128(im, w_target=-1):
h, w = im.shape[:2]
aspect_ratio = h / w
if w_target < 0:
w_target = w
nw = int(w_target / 128) * 128
nh = int(nw * aspect_ratio / 128) * 128
return nh, nw
def is_image_file(filename):
"""Check that a file's name points to a known image format"""
if isinstance(filename, Path):
return filename.suffix in IMG_EXTENSIONS
return Path(filename).suffix in IMG_EXTENSIONS
def find_images(path, recursive=False):
"""
Get a list of all images contained in a directory:
- path.glob("*") if not recursive
- path.glob("**/*") if recursive
"""
p = Path(path)
assert p.exists()
assert p.is_dir()
pattern = "*"
if recursive:
pattern += "*/*"
return [i for i in p.glob(pattern) if i.is_file() and is_image_file(i)]
def cols():
try:
col = os.get_terminal_size().columns
except Exception:
col = 50
return col
def upload_images_to_exp(
path, exp=None, project_name="climategan-eval", sleep=-1, verbose=0
):
ims = find_images(path)
end = None
c = cols()
if verbose == 1:
end = "\r"
if verbose > 1:
end = "\n"
if exp is None:
exp = Experiment(project_name=project_name)
for im in ims:
exp.log_image(str(im))
if verbose > 0:
if verbose == 1:
print(" " * (c - 1), end="\r", flush=True)
print(str(im), end=end, flush=True)
if sleep > 0:
time.sleep(sleep)
return exp
|