Spaces:
Runtime error
Runtime error
File size: 18,160 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import cv2
import numpy as np
import torch
from skimage import filters
from sklearn.metrics.pairwise import euclidean_distances
import matplotlib.pyplot as plt
import seaborn as sns
from copy import deepcopy
# ------------------------------------------------------------------------------
# ----- Evaluation metrics for a pair of binary mask images (pred, target) -----
# ------------------------------------------------------------------------------
def get_accuracy(arr1, arr2):
"""pixel accuracy
Args:
arr1 (np.array)
arr2 (np.array)
"""
return (arr1 == arr2).sum() / arr1.size
def trimap(pred_im, gt_im, thickness=8):
"""Compute accuracy in a region of thickness around the contours
for binary images (0-1 values)
Args:
pred_im (Image): Prediction
gt_im (Image): Target
thickness (int, optional): [description]. Defaults to 8.
"""
W, H = gt_im.size
contours, hierarchy = cv2.findContours(
np.array(gt_im), mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_SIMPLE
)
mask_contour = np.zeros((H, W), dtype=np.int32)
cv2.drawContours(
mask_contour, contours, -1, (1), thickness=thickness, hierarchy=hierarchy
)
gt_contour = np.array(gt_im)[np.where(mask_contour > 0)]
pred_contour = np.array(pred_im)[np.where(mask_contour > 0)]
return get_accuracy(pred_contour, gt_contour)
def iou(pred_im, gt_im):
"""
IoU for binary masks (0-1 values)
Args:
pred_im ([type]): [description]
gt_im ([type]): [description]
"""
pred = np.array(pred_im)
gt = np.array(gt_im)
intersection = (pred * gt).sum()
union = (pred + gt).sum() - intersection
return intersection / union
def f1_score(pred_im, gt_im):
pred = np.array(pred_im)
gt = np.array(gt_im)
intersection = (pred * gt).sum()
return 2 * intersection / (pred + gt).sum()
def accuracy(pred_im, gt_im):
pred = np.array(pred_im)
gt = np.array(gt_im)
if len(gt_im.shape) == 4:
assert gt_im.shape[1] == 1
gt_im = gt_im[:, 0, :, :]
if len(pred.shape) > len(gt_im.shape):
pred = np.argmax(pred, axis=1)
return float((pred == gt).sum()) / gt.size
def mIOU(pred, label, average="macro"):
"""
Adapted from:
https://stackoverflow.com/questions/62461379/multiclass-semantic-segmentation-model-evaluation
Compute the mean IOU from pred and label tensors
pred is a tensor N x C x H x W with logits (softmax will be applied)
and label is a N x H x W tensor with int labels per pixel
this does the same as sklearn's jaccard_score function if you choose average="macro"
Args:
pred (torch.tensor): predicted logits
label (torch.tensor): labels
average: "macro" or "weighted"
Returns:
float: mIOU, can be nan
"""
num_classes = pred.shape[-3]
pred = torch.argmax(pred, dim=1).squeeze(1)
present_iou_list = list()
pred = pred.view(-1)
label = label.view(-1)
# Note: Following for loop goes from 0 to (num_classes-1)
# and ignore_index is num_classes, thus ignore_index is
# not considered in computation of IoU.
interesting_classes = (
[*range(num_classes)] if num_classes > 2 else [int(label.max().item())]
)
weights = []
for sem_class in interesting_classes:
pred_inds = pred == sem_class
target_inds = label == sem_class
if (target_inds.long().sum().item() > 0) or (pred_inds.long().sum().item() > 0):
intersection_now = (pred_inds[target_inds]).long().sum().item()
union_now = (
pred_inds.long().sum().item()
+ target_inds.long().sum().item()
- intersection_now
)
weights.append(pred_inds.long().sum().item())
iou_now = float(intersection_now) / float(union_now)
present_iou_list.append(iou_now)
if not present_iou_list:
return float("nan")
elif average == "weighted":
weighted_avg = np.sum(np.multiply(weights, present_iou_list) / np.sum(weights))
return weighted_avg
else:
return np.mean(present_iou_list)
def masker_classification_metrics(
pred, label, labels_dict={"cannot": 0, "must": 1, "may": 2}
):
"""
Classification metrics for the masker, and the corresponding maps. If the
predictions are soft, the errors are weighted accordingly. Metrics computed:
tpr : float
True positive rate
tpt : float
True positive total (divided by total population)
tnr : float
True negative rate
tnt : float
True negative total (divided by total population)
fpr : float
False positive rate: rate of predicted mask on cannot flood
fpt : float
False positive total (divided by total population)
fnr : float
False negative rate: rate of missed mask on must flood
fnt : float
False negative total (divided by total population)
mnr : float
"May" negative rate (labeled as "may", predicted as no-mask)
mpr : float
"May" positive rate (labeled as "may", predicted as mask)
accuracy : float
Accuracy
error : float
Error
precision : float
Precision, considering only cannot and must flood labels
f05 : float
F0.5 score, considering only cannot and must flood labels
accuracy_must_may : float
Accuracy considering only the must and may areas
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
labels_dict : dict
A dictionary with the identifier of each class (cannot, must, may)
Returns
-------
metrics_dict : dict
A dictionary with metric name and value pairs
maps_dict : dict
A dictionary containing the metric maps
"""
tp_map = pred * np.asarray(label == labels_dict["must"], dtype=int)
tpr = np.sum(tp_map) / np.sum(label == labels_dict["must"])
tpt = np.sum(tp_map) / np.prod(label.shape)
tn_map = (1.0 - pred) * np.asarray(label == labels_dict["cannot"], dtype=int)
tnr = np.sum(tn_map) / np.sum(label == labels_dict["cannot"])
tnt = np.sum(tn_map) / np.prod(label.shape)
fp_map = pred * np.asarray(label == labels_dict["cannot"], dtype=int)
fpr = np.sum(fp_map) / np.sum(label == labels_dict["cannot"])
fpt = np.sum(fp_map) / np.prod(label.shape)
fn_map = (1.0 - pred) * np.asarray(label == labels_dict["must"], dtype=int)
fnr = np.sum(fn_map) / np.sum(label == labels_dict["must"])
fnt = np.sum(fn_map) / np.prod(label.shape)
may_neg_map = (1.0 - pred) * np.asarray(label == labels_dict["may"], dtype=int)
may_pos_map = pred * np.asarray(label == labels_dict["may"], dtype=int)
mnr = np.sum(may_neg_map) / np.sum(label == labels_dict["may"])
mpr = np.sum(may_pos_map) / np.sum(label == labels_dict["may"])
accuracy = tpt + tnt
error = fpt + fnt
# Assertions
assert np.isclose(tpr, 1.0 - fnr), "TPR: {:.4f}, FNR: {:.4f}".format(tpr, fnr)
assert np.isclose(tnr, 1.0 - fpr), "TNR: {:.4f}, FPR: {:.4f}".format(tnr, fpr)
assert np.isclose(mpr, 1.0 - mnr), "MPR: {:.4f}, MNR: {:.4f}".format(mpr, mnr)
precision = np.sum(tp_map) / (np.sum(tp_map) + np.sum(fp_map) + 1e-9)
beta = 0.5
f05 = ((1 + beta ** 2) * precision * tpr) / (beta ** 2 * precision + tpr + 1e-9)
accuracy_must_may = (np.sum(tp_map) + np.sum(may_neg_map)) / (
np.sum(label == labels_dict["must"]) + np.sum(label == labels_dict["may"])
)
metrics_dict = {
"tpr": tpr,
"tpt": tpt,
"tnr": tnr,
"tnt": tnt,
"fpr": fpr,
"fpt": fpt,
"fnr": fnr,
"fnt": fnt,
"mpr": mpr,
"mnr": mnr,
"accuracy": accuracy,
"error": error,
"precision": precision,
"f05": f05,
"accuracy_must_may": accuracy_must_may,
}
maps_dict = {
"tp": tp_map,
"tn": tn_map,
"fp": fp_map,
"fn": fn_map,
"may_pos": may_pos_map,
"may_neg": may_neg_map,
}
return metrics_dict, maps_dict
def pred_cannot(pred, label, label_cannot=0):
"""
Metric for the masker: Computes false positive rate and its map. If the
predictions are soft, the errors are weighted accordingly.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_cannot : int
The label index of "cannot flood"
Returns
-------
fp_map : array-like
The map of false positives: predicted mask on cannot flood
fpr : float
False positive rate: rate of predicted mask on cannot flood
"""
fp_map = pred * np.asarray(label == label_cannot, dtype=int)
fpr = np.sum(fp_map) / np.sum(label == label_cannot)
return fp_map, fpr
def missed_must(pred, label, label_must=1):
"""
Metric for the masker: Computes false negative rate and its map. If the
predictions are soft, the errors are weighted accordingly.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_must : int
The label index of "must flood"
Returns
-------
fn_map : array-like
The map of false negatives: missed mask on must flood
fnr : float
False negative rate: rate of missed mask on must flood
"""
fn_map = (1.0 - pred) * np.asarray(label == label_must, dtype=int)
fnr = np.sum(fn_map) / np.sum(label == label_must)
return fn_map, fnr
def may_flood(pred, label, label_may=2):
"""
Metric for the masker: Computes "may" negative and "may" positive rates and their
map. If the predictions are soft, the "errors" are weighted accordingly.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_may : int
The label index of "may flood"
Returns
-------
may_neg_map : array-like
The map of "may" negatives
may_pos_map : array-like
The map of "may" positives
mnr : float
"May" negative rate
mpr : float
"May" positive rate
"""
may_neg_map = (1.0 - pred) * np.asarray(label == label_may, dtype=int)
may_pos_map = pred * np.asarray(label == label_may, dtype=int)
mnr = np.sum(may_neg_map) / np.sum(label == label_may)
mpr = np.sum(may_pos_map) / np.sum(label == label_may)
return may_neg_map, may_pos_map, mnr, mpr
def masker_metrics(pred, label, label_cannot=0, label_must=1):
"""
Computes a set of metrics for the masker
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_must : int
The label index of "must flood"
label_cannot : int
The label index of "cannot flood"
Returns
-------
tpr : float
True positive rate
tnr : float
True negative rate
precision : float
Precision, considering only cannot and must flood labels
f1 : float
F1 score, considering only cannot and must flood labels
"""
tp_map = pred * np.asarray(label == label_must, dtype=int)
tpr = np.sum(tp_map) / np.sum(label == label_must)
tn_map = (1.0 - pred) * np.asarray(label == label_cannot, dtype=int)
tnr = np.sum(tn_map) / np.sum(label == label_cannot)
fp_map = pred * np.asarray(label == label_cannot, dtype=int)
fn_map = (1.0 - pred) * np.asarray(label == label_must, dtype=int) # noqa: F841
precision = np.sum(tp_map) / (np.sum(tp_map) + np.sum(fp_map))
f1 = 2 * (precision * tpr) / (precision + tpr)
return tpr, tnr, precision, f1
def get_confusion_matrix(tpr, tnr, fpr, fnr, mpr, mnr):
"""
Constructs the confusion matrix of a masker prediction over a set of samples
Parameters
----------
tpr : vector-like
True positive rate
tnr : vector-like
True negative rate
fpr : vector-like
False positive rate
fnr : vector-like
False negative rate
mpr : vector-like
"May" positive rate
mnr : vector-like
"May" negative rate
Returns
-------
confusion_matrix : 3x3 array
Confusion matrix: [i, j] = [pred, true]
| tnr fnr mnr |
| fpr tpr mpr |
| 0. 0, 0, |
confusion_matrix_std : 3x3 array
Standard deviation of the confusion matrix
"""
# Compute mean and standard deviations over all samples
tpr_m = np.mean(tpr)
tpr_s = np.std(tpr)
tnr_m = np.mean(tnr)
tnr_s = np.std(tnr)
fpr_m = np.mean(fpr)
fpr_s = np.std(fpr)
fnr_m = np.mean(fnr)
fnr_s = np.std(fnr)
mpr_m = np.mean(mpr)
mpr_s = np.std(mpr)
mnr_m = np.mean(mnr)
mnr_s = np.std(mnr)
# Assertions
assert np.isclose(tpr_m, 1.0 - fnr_m), "TPR: {:.4f}, FNR: {:.4f}".format(
tpr_m, fnr_m
)
assert np.isclose(tnr_m, 1.0 - fpr_m), "TNR: {:.4f}, FPR: {:.4f}".format(
tnr_m, fpr_m
)
assert np.isclose(mpr_m, 1.0 - mnr_m), "MPR: {:.4f}, MNR: {:.4f}".format(
mpr_m, mnr_m
)
# Fill confusion matrix
confusion_matrix = np.zeros((3, 3))
confusion_matrix[0, 0] = tnr_m
confusion_matrix[0, 1] = fnr_m
confusion_matrix[0, 2] = mnr_m
confusion_matrix[1, 0] = fpr_m
confusion_matrix[1, 1] = tpr_m
confusion_matrix[1, 2] = mpr_m
confusion_matrix[2, 2] = 0.0
# Standard deviation
confusion_matrix_std = np.zeros((3, 3))
confusion_matrix_std[0, 0] = tnr_s
confusion_matrix_std[0, 1] = fnr_s
confusion_matrix_std[0, 2] = mnr_s
confusion_matrix_std[1, 0] = fpr_s
confusion_matrix_std[1, 1] = tpr_s
confusion_matrix_std[1, 2] = mpr_s
confusion_matrix_std[2, 2] = 0.0
return confusion_matrix, confusion_matrix_std
def edges_coherence_std_min(pred, label, label_must=1, bin_th=0.5):
"""
The standard deviation of the minimum distance between the edge of the prediction
and the edge of the "must flood" label.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_must : int
The label index of "must flood"
bin_th : float
The threshold for the binarization of the prediction
Returns
-------
metric : float
The value of the metric
pred_edge : array-like
The edges images of the prediction, for visualization
label_edge : array-like
The edges images of the "must flood" label, for visualization
"""
# Keep must flood label only
label = deepcopy(label)
label[label != label_must] = -1
label[label == label_must] = 1
label[label != label_must] = 0
label = np.asarray(label, dtype=float)
# Binarize prediction
pred = np.asarray(pred > bin_th, dtype=float)
# Compute edges
pred = filters.sobel(pred)
label = filters.sobel(label)
# Location of edges
pred_coord = np.argwhere(pred > 0)
label_coord = np.argwhere(label > 0)
# Handle blank predictions
if pred_coord.shape[0] == 0:
return 1.0, pred, label
# Normalized pairwise distances between pred and label
dist_mat = np.divide(euclidean_distances(pred_coord, label_coord), pred.shape[0])
# Standard deviation of the minimum distance from pred to label
edge_coherence = np.std(np.min(dist_mat, axis=1))
return edge_coherence, pred, label
def boxplot_metric(
output_filename,
df,
metric,
dict_metrics,
do_stripplot=False,
dict_models=None,
dpi=300,
**snskwargs
):
f = plt.figure(dpi=dpi)
if do_stripplot:
ax = sns.boxplot(x="model", y=metric, data=df, fliersize=0.0, **snskwargs)
ax = sns.stripplot(
x="model", y=metric, data=df, size=2.0, color="gray", **snskwargs
)
else:
ax = sns.boxplot(x="model", y=metric, data=df, **snskwargs)
# Set axes labels
ax.set_xlabel("Models", rotation=0, fontsize="medium")
ax.set_ylabel(dict_metrics[metric], rotation=90, fontsize="medium")
# Spines
sns.despine(left=True, bottom=True)
# X-Tick labels
if dict_models:
xticklabels = [dict_models[t.get_text()] for t in ax.get_xticklabels()]
ax.set_xticklabels(
xticklabels,
rotation=20,
verticalalignment="top",
horizontalalignment="right",
fontsize="xx-small",
)
f.savefig(
output_filename,
dpi=f.dpi,
bbox_inches="tight",
facecolor="white",
transparent=False,
)
f.clear()
plt.close(f)
def clustermap_metric(
output_filename,
df,
metric,
dict_metrics,
method="average",
cluster_metric="euclidean",
dict_models=None,
dpi=300,
**snskwargs
):
ax_grid = sns.clustermap(data=df, method=method, metric=cluster_metric, **snskwargs)
ax_heatmap = ax_grid.ax_heatmap
ax_cbar = ax_grid.ax_cbar
# Set axes labels
ax_heatmap.set_xlabel("Models", rotation=0, fontsize="medium")
ax_heatmap.set_ylabel("Images", rotation=90, fontsize="medium")
# Set title
ax_cbar.set_title(dict_metrics[metric], rotation=0, fontsize="x-large")
# X-Tick labels
if dict_models:
xticklabels = [dict_models[t.get_text()] for t in ax_heatmap.get_xticklabels()]
ax_heatmap.set_xticklabels(
xticklabels,
rotation=20,
verticalalignment="top",
horizontalalignment="right",
fontsize="small",
)
ax_grid.fig.savefig(
output_filename,
dpi=dpi,
bbox_inches="tight",
facecolor="white",
transparent=False,
)
ax_grid.fig.clear()
plt.close(ax_grid.fig)
|