Spaces:
Runtime error
Runtime error
File size: 10,786 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
"""
This script computes the median difference and confidence intervals of all techniques from the ablation study for
improving the masker evaluation metrics. The differences in the metrics are computed
for all images of paired models, that is those which only differ in the inclusion or
not of the given technique. Then, statistical inference is performed through the
percentile bootstrap to obtain robust estimates of the differences in the metrics and
confidence intervals. The script plots the summary for all techniques.
"""
print("Imports...", end="")
from argparse import ArgumentParser
import yaml
import numpy as np
import pandas as pd
import seaborn as sns
from scipy.special import comb
from scipy.stats import trim_mean
from tqdm import tqdm
from collections import OrderedDict
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.transforms as transforms
# -----------------------
# ----- Constants -----
# -----------------------
dict_metrics = {
"names": {
"tpr": "TPR, Recall, Sensitivity",
"tnr": "TNR, Specificity, Selectivity",
"fpr": "FPR",
"fpt": "False positives relative to image size",
"fnr": "FNR, Miss rate",
"fnt": "False negatives relative to image size",
"mpr": "May positive rate (MPR)",
"mnr": "May negative rate (MNR)",
"accuracy": "Accuracy (ignoring may)",
"error": "Error",
"f05": "F05 score",
"precision": "Precision",
"edge_coherence": "Edge coherence",
"accuracy_must_may": "Accuracy (ignoring cannot)",
},
"key_metrics": ["error", "f05", "edge_coherence"],
}
dict_techniques = OrderedDict(
[
("pseudo", "Pseudo labels"),
("depth", "Depth (D)"),
("seg", "Seg. (S)"),
("spade", "SPADE"),
("dada_seg", "DADA (S)"),
("dada_masker", "DADA (M)"),
]
)
# Model features
model_feats = [
"masker",
"seg",
"depth",
"dada_seg",
"dada_masker",
"spade",
"pseudo",
"ground",
"instagan",
]
# Colors
crest = sns.color_palette("crest", as_cmap=False, n_colors=7)
palette_metrics = [crest[0], crest[3], crest[6]]
sns.palplot(palette_metrics)
# Markers
dict_markers = {"error": "o", "f05": "s", "edge_coherence": "^"}
def parsed_args():
"""
Parse and returns command-line args
Returns:
argparse.Namespace: the parsed arguments
"""
parser = ArgumentParser()
parser.add_argument(
"--input_csv",
default="ablations_metrics_20210311.csv",
type=str,
help="CSV containing the results of the ablation study",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="Output directory",
)
parser.add_argument(
"--dpi",
default=200,
type=int,
help="DPI for the output images",
)
parser.add_argument(
"--n_bs",
default=1e6,
type=int,
help="Number of bootrstrap samples",
)
parser.add_argument(
"--alpha",
default=0.99,
type=float,
help="Confidence level",
)
parser.add_argument(
"--bs_seed",
default=17,
type=int,
help="Bootstrap random seed, for reproducibility",
)
return parser.parse_args()
def trim_mean_wrapper(a):
return trim_mean(a, proportiontocut=0.2)
def find_model_pairs(technique, model_feats):
model_pairs = []
for mi in df.loc[df[technique]].model_feats.unique():
for mj in df.model_feats.unique():
if mj == mi:
continue
if df.loc[df.model_feats == mj, technique].unique()[0]:
continue
is_pair = True
for f in model_feats:
if f == technique:
continue
elif (
df.loc[df.model_feats == mj, f].unique()[0]
!= df.loc[df.model_feats == mi, f].unique()[0]
):
is_pair = False
break
else:
pass
if is_pair:
model_pairs.append((mi, mj))
break
return model_pairs
if __name__ == "__main__":
# -----------------------------
# ----- Parse arguments -----
# -----------------------------
args = parsed_args()
print("Args:\n" + "\n".join([f" {k:20}: {v}" for k, v in vars(args).items()]))
# Determine output dir
if args.output_dir is None:
output_dir = Path(os.environ["SLURM_TMPDIR"])
else:
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=False)
# Store args
output_yml = output_dir / "bootstrap_summary.yml"
with open(output_yml, "w") as f:
yaml.dump(vars(args), f)
# Read CSV
df = pd.read_csv(args.input_csv, index_col="model_img_idx")
# Build data set
dfbs = pd.DataFrame(columns=["diff", "technique", "metric"])
for technique in model_feats:
# Get pairs
model_pairs = find_model_pairs(technique, model_feats)
# Compute differences
for m_with, m_without in model_pairs:
df_with = df.loc[df.model_feats == m_with]
df_without = df.loc[df.model_feats == m_without]
for metric in dict_metrics["key_metrics"]:
diff = (
df_with.sort_values(by="img_idx")[metric].values
- df_without.sort_values(by="img_idx")[metric].values
)
dfm = pd.DataFrame.from_dict(
{"metric": metric, "technique": technique, "diff": diff}
)
dfbs = dfbs.append(dfm, ignore_index=True)
### Plot
# Set up plot
sns.reset_orig()
sns.set(style="whitegrid")
plt.rcParams.update({"font.family": "serif"})
plt.rcParams.update(
{
"font.serif": [
"Computer Modern Roman",
"Times New Roman",
"Utopia",
"New Century Schoolbook",
"Century Schoolbook L",
"ITC Bookman",
"Bookman",
"Times",
"Palatino",
"Charter",
"serif" "Bitstream Vera Serif",
"DejaVu Serif",
]
}
)
fig, axes = plt.subplots(
nrows=1, ncols=3, sharey=True, dpi=args.dpi, figsize=(9, 3)
)
metrics = ["error", "f05", "edge_coherence"]
dict_ci = {m: {} for m in metrics}
for idx, metric in enumerate(dict_metrics["key_metrics"]):
ax = sns.pointplot(
ax=axes[idx],
data=dfbs.loc[dfbs.metric.isin(["error", "f05", "edge_coherence"])],
order=dict_techniques.keys(),
x="diff",
y="technique",
hue="metric",
hue_order=[metric],
markers=dict_markers[metric],
palette=[palette_metrics[idx]],
errwidth=1.5,
scale=0.6,
join=False,
estimator=trim_mean_wrapper,
ci=int(args.alpha * 100),
n_boot=args.n_bs,
seed=args.bs_seed,
)
# Retrieve confidence intervals and update results dictionary
for line, technique in zip(ax.lines, dict_techniques.keys()):
dict_ci[metric].update(
{
technique: {
"20_trimmed_mean": float(
trim_mean_wrapper(
dfbs.loc[
(dfbs.technique == technique)
& (dfbs.metric == metrics[idx]),
"diff",
].values
)
),
"ci_left": float(line.get_xdata()[0]),
"ci_right": float(line.get_xdata()[1]),
}
}
)
leg_handles, leg_labels = ax.get_legend_handles_labels()
# Change spines
sns.despine(left=True, bottom=True)
# Set Y-label
ax.set_ylabel(None)
# Y-tick labels
ax.set_yticklabels(list(dict_techniques.values()), fontsize="medium")
# Set X-label
ax.set_xlabel(None)
# X-ticks
xticks = ax.get_xticks()
xticklabels = xticks
ax.set_xticks(xticks)
ax.set_xticklabels(xticklabels, fontsize="small")
# Y-lim
display2data = ax.transData.inverted()
ax2display = ax.transAxes
_, y_bottom = display2data.transform(ax.transAxes.transform((0.0, 0.02)))
_, y_top = display2data.transform(ax.transAxes.transform((0.0, 0.98)))
ax.set_ylim(bottom=y_bottom, top=y_top)
# Draw line at H0
y = np.arange(ax.get_ylim()[1], ax.get_ylim()[0], 0.1)
x = 0.0 * np.ones(y.shape[0])
ax.plot(x, y, linestyle=":", linewidth=1.5, color="black")
# Draw gray area
xlim = ax.get_xlim()
ylim = ax.get_ylim()
if metric == "error":
x0 = xlim[0]
width = np.abs(x0)
else:
x0 = 0.0
width = np.abs(xlim[1])
trans = transforms.blended_transform_factory(ax.transData, ax.transAxes)
rect = mpatches.Rectangle(
xy=(x0, 0.0),
width=width,
height=1,
transform=trans,
linewidth=0.0,
edgecolor="none",
facecolor="gray",
alpha=0.05,
)
ax.add_patch(rect)
# Legend
leg_handles, leg_labels = ax.get_legend_handles_labels()
leg_labels = [dict_metrics["names"][metric] for metric in leg_labels]
leg = ax.legend(
handles=leg_handles,
labels=leg_labels,
loc="center",
title="",
bbox_to_anchor=(-0.2, 1.05, 1.0, 0.0),
framealpha=1.0,
frameon=False,
handletextpad=-0.2,
)
# Set X-label (title) │
fig.suptitle(
"20 % trimmed mean difference and bootstrapped confidence intervals",
y=0.0,
fontsize="medium",
)
# Save figure
output_fig = output_dir / "bootstrap_summary.png"
fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")
# Store results
output_results = output_dir / "bootstrap_summary_results.yml"
with open(output_results, "w") as f:
yaml.dump(dict_ci, f)
|