Spaces:
Runtime error
Runtime error
File size: 20,713 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-b",
"--batch_size",
type=int,
default=4,
help="Batch size to process input images to events. Defaults to 4",
)
parser.add_argument(
"-i",
"--images_paths",
type=str,
required=True,
help="Path to a directory with image files",
)
parser.add_argument(
"-o",
"--output_path",
type=str,
default=None,
help="Path to a directory were events should be written. "
+ "Will NOT write anything to disk if this flag is not used.",
)
parser.add_argument(
"-s",
"--save_input",
action="store_true",
default=False,
help="Binary flag to include the input image to the model (after crop and"
+ " resize) in the images written or uploaded (depending on saving options.)",
)
parser.add_argument(
"-r",
"--resume_path",
type=str,
default=None,
help="Path to a directory containing the trainer to resume."
+ " In particular it must contain `opts.yam` and `checkpoints/`."
+ " Typically this points to a Masker, which holds the path to a"
+ " Painter in its opts",
)
parser.add_argument(
"--no_time",
action="store_true",
default=False,
help="Binary flag to prevent the timing of operations.",
)
parser.add_argument(
"-f",
"--flood_mask_binarization",
type=float,
default=0.5,
help="Value to use to binarize masks (mask > value). "
+ "Set to -1 to use soft masks (not binarized). Defaults to 0.5.",
)
parser.add_argument(
"-t",
"--target_size",
type=int,
default=640,
help="Output image size (when not using `keep_ratio_128`): images are resized"
+ " such that their smallest side is `target_size` then cropped in the middle"
+ " of the largest side such that the resulting input image (and output images)"
+ " has height and width `target_size x target_size`. **Must** be a multiple of"
+ " 2^7=128 (up/downscaling inside the models). Defaults to 640.",
)
parser.add_argument(
"--half",
action="store_true",
default=False,
help="Binary flag to use half precision (float16). Defaults to False.",
)
parser.add_argument(
"-n",
"--n_images",
default=-1,
type=int,
help="Limit the number of images processed (if you have 100 images in "
+ "a directory but n is 10 then only the first 10 images will be loaded"
+ " for processing)",
)
parser.add_argument(
"--no_conf",
action="store_true",
default=False,
help="disable writing the apply_events hash and command in the output folder",
)
parser.add_argument(
"--overwrite",
action="store_true",
default=False,
help="Do not check for existing outdir, i.e. force overwrite"
+ " potentially existing files in the output path",
)
parser.add_argument(
"--no_cloudy",
action="store_true",
default=False,
help="Prevent the use of the cloudy intermediate"
+ " image to create the flood image. Rendering will"
+ " be more colorful but may seem less realistic",
)
parser.add_argument(
"--keep_ratio_128",
action="store_true",
default=False,
help="When loading the input images, resize and crop them in order for their "
+ "dimensions to match the closest multiples"
+ " of 128. Will force a batch size of 1 since images"
+ " now have different dimensions. "
+ "Use --max_im_width to cap the resulting dimensions.",
)
parser.add_argument(
"--fuse",
action="store_true",
default=False,
help="Use batch norm fusion to speed up inference",
)
parser.add_argument(
"--save_masks",
action="store_true",
default=False,
help="Save output masks along events",
)
parser.add_argument(
"-m",
"--max_im_width",
type=int,
default=-1,
help="When using --keep_ratio_128, some images may still be too large. Use "
+ "--max_im_width to cap the resized image's width. Defaults to -1 (no cap).",
)
parser.add_argument(
"--upload",
action="store_true",
help="Upload to comet.ml in a project called `climategan-apply`",
)
parser.add_argument(
"--zip_outdir",
"-z",
action="store_true",
help="Zip the output directory as '{outdir.parent}/{outdir.name}.zip'",
)
return parser.parse_args()
args = parse_args()
print("\n• Imports\n")
import time
import_time = time.time()
import sys
import shutil
from collections import OrderedDict
from pathlib import Path
import comet_ml # noqa: F401
import torch
import numpy as np
import skimage.io as io
from skimage.color import rgba2rgb
from skimage.transform import resize
from tqdm import tqdm
from climategan.trainer import Trainer
from climategan.bn_fusion import bn_fuse
from climategan.tutils import print_num_parameters
from climategan.utils import Timer, find_images, get_git_revision_hash, to_128, resolve
import_time = time.time() - import_time
def to_m1_p1(img, i):
"""
rescales a [0, 1] image to [-1, +1]
Args:
img (np.array): float32 numpy array of an image in [0, 1]
i (int): Index of the image being rescaled
Raises:
ValueError: If the image is not in [0, 1]
Returns:
np.array(np.float32): array in [-1, +1]
"""
if img.min() >= 0 and img.max() <= 1:
return (img.astype(np.float32) - 0.5) * 2
raise ValueError(f"Data range mismatch for image {i} : ({img.min()}, {img.max()})")
def uint8(array):
"""
convert an array to np.uint8 (does not rescale or anything else than changing dtype)
Args:
array (np.array): array to modify
Returns:
np.array(np.uint8): converted array
"""
return array.astype(np.uint8)
def resize_and_crop(img, to=640):
"""
Resizes an image so that it keeps the aspect ratio and the smallest dimensions
is `to`, then crops this resized image in its center so that the output is `to x to`
without aspect ratio distortion
Args:
img (np.array): np.uint8 255 image
Returns:
np.array: [0, 1] np.float32 image
"""
# resize keeping aspect ratio: smallest dim is 640
h, w = img.shape[:2]
if h < w:
size = (to, int(to * w / h))
else:
size = (int(to * h / w), to)
r_img = resize(img, size, preserve_range=True, anti_aliasing=True)
r_img = uint8(r_img)
# crop in the center
H, W = r_img.shape[:2]
top = (H - to) // 2
left = (W - to) // 2
rc_img = r_img[top : top + to, left : left + to, :]
return rc_img / 255.0
def print_time(text, time_series, purge=-1):
"""
Print a timeseries's mean and std with a label
Args:
text (str): label of the time series
time_series (list): list of timings
purge (int, optional): ignore first n values of time series. Defaults to -1.
"""
if not time_series:
return
if purge > 0 and len(time_series) > purge:
time_series = time_series[purge:]
m = np.mean(time_series)
s = np.std(time_series)
print(
f"{text.capitalize() + ' ':.<26} {m:.5f}"
+ (f" +/- {s:.5f}" if len(time_series) > 1 else "")
)
def print_store(store, purge=-1):
"""
Pretty-print time series store
Args:
store (dict): maps string keys to lists of times
purge (int, optional): ignore first n values of time series. Defaults to -1.
"""
singles = OrderedDict({k: v for k, v in store.items() if len(v) == 1})
multiples = OrderedDict({k: v for k, v in store.items() if len(v) > 1})
empties = {k: v for k, v in store.items() if len(v) == 0}
if empties:
print("Ignoring empty stores ", ", ".join(empties.keys()))
print()
for k in singles:
print_time(k, singles[k], purge)
print()
print("Unit: s/batch")
for k in multiples:
print_time(k, multiples[k], purge)
print()
def write_apply_config(out):
"""
Saves the args to `apply_events.py` in a text file for future reference
"""
cwd = Path.cwd().expanduser().resolve()
command = f"cd {str(cwd)}\n"
command += " ".join(sys.argv)
git_hash = get_git_revision_hash()
with (out / "command.txt").open("w") as f:
f.write(command)
with (out / "hash.txt").open("w") as f:
f.write(git_hash)
def get_outdir_name(half, keep_ratio, max_im_width, target_size, bin_value, cloudy):
"""
Create the output directory's name based on uer-provided arguments
"""
name_items = []
if half:
name_items.append("half")
if keep_ratio:
name_items.append("AR")
if max_im_width and keep_ratio:
name_items.append(f"{max_im_width}")
if target_size and not keep_ratio:
name_items.append("S")
name_items.append(f"{target_size}")
if bin_value != 0.5:
name_items.append(f"bin{bin_value}")
if not cloudy:
name_items.append("no_cloudy")
return "-".join(name_items)
def make_outdir(
outdir, overwrite, half, keep_ratio, max_im_width, target_size, bin_value, cloudy
):
"""
Creates the output directory if it does not exist. If it does exist,
prompts the user for confirmation (except if `overwrite` is True).
If the output directory's name is "_auto_" then it is created as:
outdir.parent / get_outdir_name(...)
"""
if outdir.name == "_auto_":
outdir = outdir.parent / get_outdir_name(
half, keep_ratio, max_im_width, target_size, bin_value, cloudy
)
if outdir.exists() and not overwrite:
print(
f"\nWARNING: outdir ({str(outdir)}) already exists."
+ " Files with existing names will be overwritten"
)
if "n" in input(">>> Continue anyway? [y / n] (default: y) : "):
print("Interrupting execution from user input.")
sys.exit()
print()
outdir.mkdir(exist_ok=True, parents=True)
return outdir
def get_time_stores(import_time):
return OrderedDict(
{
"imports": [import_time],
"setup": [],
"data pre-processing": [],
"encode": [],
"mask": [],
"flood": [],
"depth": [],
"segmentation": [],
"smog": [],
"wildfire": [],
"all events": [],
"numpy": [],
"inference on all images": [],
"write": [],
}
)
if __name__ == "__main__":
# -----------------------------------------
# ----- Initialize script variables -----
# -----------------------------------------
print(
"• Using args\n\n"
+ "\n".join(["{:25}: {}".format(k, v) for k, v in vars(args).items()]),
)
batch_size = args.batch_size
bin_value = args.flood_mask_binarization
cloudy = not args.no_cloudy
fuse = args.fuse
half = args.half
save_masks = args.save_masks
images_paths = resolve(args.images_paths)
keep_ratio = args.keep_ratio_128
max_im_width = args.max_im_width
n_images = args.n_images
outdir = resolve(args.output_path) if args.output_path is not None else None
resume_path = args.resume_path
target_size = args.target_size
time_inference = not args.no_time
upload = args.upload
zip_outdir = args.zip_outdir
# -------------------------------------
# ----- Validate size arguments -----
# -------------------------------------
if keep_ratio:
if target_size != 640:
print(
"\nWARNING: using --keep_ratio_128 overwrites target_size"
+ " which is ignored."
)
if batch_size != 1:
print("\nWARNING: batch_size overwritten to 1 when using keep_ratio_128")
batch_size = 1
if max_im_width > 0 and max_im_width % 128 != 0:
new_im_width = int(max_im_width / 128) * 128
print("\nWARNING: max_im_width should be <0 or a multiple of 128.")
print(
" Was {} but is now overwritten to {}".format(
max_im_width, new_im_width
)
)
max_im_width = new_im_width
else:
if target_size % 128 != 0:
print(f"\nWarning: target size {target_size} is not a multiple of 128.")
target_size = target_size - (target_size % 128)
print(f"Setting target_size to {target_size}.")
# -------------------------------------
# ----- Create output directory -----
# -------------------------------------
if outdir is not None:
outdir = make_outdir(
outdir,
args.overwrite,
half,
keep_ratio,
max_im_width,
target_size,
bin_value,
cloudy,
)
# -------------------------------
# ----- Create time store -----
# -------------------------------
stores = get_time_stores(import_time)
# -----------------------------------
# ----- Load Trainer instance -----
# -----------------------------------
with Timer(store=stores.get("setup", []), ignore=time_inference):
print("\n• Initializing trainer\n")
torch.set_grad_enabled(False)
trainer = Trainer.resume_from_path(
resume_path,
setup=True,
inference=True,
new_exp=None,
)
print()
print_num_parameters(trainer, True)
if fuse:
trainer.G = bn_fuse(trainer.G)
if half:
trainer.G.half()
# --------------------------------------------
# ----- Read data from input directory -----
# --------------------------------------------
print("\n• Reading & Pre-processing Data\n")
# find all images
data_paths = find_images(images_paths)
base_data_paths = data_paths
# filter images
if 0 < n_images < len(data_paths):
data_paths = data_paths[:n_images]
# repeat data
elif n_images > len(data_paths):
repeats = n_images // len(data_paths) + 1
data_paths = base_data_paths * repeats
data_paths = data_paths[:n_images]
with Timer(store=stores.get("data pre-processing", []), ignore=time_inference):
# read images to numpy arrays
data = [io.imread(str(d)) for d in data_paths]
# rgba to rgb
data = [im if im.shape[-1] == 3 else uint8(rgba2rgb(im) * 255) for im in data]
# resize images to target_size or
if keep_ratio:
# to closest multiples of 128 <= max_im_width, keeping aspect ratio
new_sizes = [to_128(d, max_im_width) for d in data]
data = [resize(d, ns, anti_aliasing=True) for d, ns in zip(data, new_sizes)]
else:
# to args.target_size
data = [resize_and_crop(d, target_size) for d in data]
new_sizes = [(target_size, target_size) for _ in data]
# resize() produces [0, 1] images, rescale to [-1, 1]
data = [to_m1_p1(d, i) for i, d in enumerate(data)]
n_batchs = len(data) // batch_size
if len(data) % batch_size != 0:
n_batchs += 1
print("Found", len(base_data_paths), "images. Inferring on", len(data), "images.")
# --------------------------------------------
# ----- Batch-process images to events -----
# --------------------------------------------
print(f"\n• Using device {str(trainer.device)}\n")
all_events = []
with Timer(store=stores.get("inference on all images", []), ignore=time_inference):
for b in tqdm(range(n_batchs), desc="Infering events", unit="batch"):
images = data[b * batch_size : (b + 1) * batch_size]
if not images:
continue
# concatenate images in a batch batch_size x height x width x 3
images = np.stack(images)
# Retreive numpy events as a dict {event: array[BxHxWxC]}
events = trainer.infer_all(
images,
numpy=True,
stores=stores,
bin_value=bin_value,
half=half,
cloudy=cloudy,
return_masks=save_masks,
)
# save resized and cropped image
if args.save_input:
events["input"] = uint8((images + 1) / 2 * 255)
# store events to write after inference loop
all_events.append(events)
# --------------------------------------------
# ----- Save (write/upload) inferences -----
# --------------------------------------------
if outdir is not None or upload:
if upload:
print("\n• Creating comet Experiment")
exp = comet_ml.Experiment(project_name="climategan-apply")
exp.log_parameters(vars(args))
# --------------------------------------------------------------
# ----- Change inferred data structure to a list of dicts -----
# --------------------------------------------------------------
to_write = []
events_names = list(all_events[0].keys())
for events_data in all_events:
n_ims = len(events_data[events_names[0]])
for i in range(n_ims):
item = {event: events_data[event][i] for event in events_names}
to_write.append(item)
progress_bar_desc = ""
if outdir is not None:
print("\n• Output directory:\n")
print(str(outdir), "\n")
if upload:
progress_bar_desc = "Writing & Uploading events"
else:
progress_bar_desc = "Writing events"
else:
if upload:
progress_bar_desc = "Uploading events"
# ------------------------------------
# ----- Save individual images -----
# ------------------------------------
with Timer(store=stores.get("write", []), ignore=time_inference):
# for each image
for t, event_dict in tqdm(
enumerate(to_write),
desc=progress_bar_desc,
unit="input image",
total=len(to_write),
):
idx = t % len(base_data_paths)
stem = Path(data_paths[idx]).stem
width = new_sizes[idx][1]
if keep_ratio:
ar = "_AR"
else:
ar = ""
# for each event type
event_bar = tqdm(
enumerate(event_dict.items()),
leave=False,
total=len(events_names),
unit="event",
)
for e, (event, im_data) in event_bar:
event_bar.set_description(
f" {event.capitalize():<{len(progress_bar_desc) - 2}}"
)
if args.no_cloudy:
suffix = ar + "_no_cloudy"
else:
suffix = ar
im_path = Path(f"{stem}_{event}_{width}{suffix}.png")
if outdir is not None:
im_path = outdir / im_path
io.imsave(im_path, im_data)
if upload:
exp.log_image(im_data, name=im_path.name)
if zip_outdir:
print("\n• Zipping output directory... ", end="", flush=True)
archive_path = Path(shutil.make_archive(outdir.name, "zip", root_dir=outdir))
archive_path = archive_path.rename(outdir.parent / archive_path.name)
print("Done:\n")
print(str(archive_path))
# ---------------------------
# ----- Print timings -----
# ---------------------------
if time_inference:
print("\n• Timings\n")
print_store(stores)
# ---------------------------------------------
# ----- Save apply_events.py run config -----
# ---------------------------------------------
if not args.no_conf and outdir is not None:
write_apply_config(outdir)
|