File size: 5,923 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
import torch.nn.functional as F

import climategan.strings as strings
from climategan.blocks import InterpolateNearest2d, SPADEResnetBlock
from climategan.norms import SpectralNorm


def create_painter(opts, no_init=False, verbose=0):
    if verbose > 0:
        print("  - Add PainterSpadeDecoder Painter")
    return PainterSpadeDecoder(opts)


class PainterSpadeDecoder(nn.Module):
    def __init__(self, opts):
        """Create a SPADE-based decoder, which forwards z and the conditioning
        tensors seg (in the original paper, conditioning is on a semantic map only).
        All along, z is conditioned on seg. First 3 SpadeResblocks (SRB) do not shrink
        the channel dimension, and an upsampling is applied after each. Therefore
        2 upsamplings at this point. Then, for each remaining upsamplings
        (w.r.t. spade_n_up), the SRB shrinks channels by 2. Before final conv to get 3
        channels, the number of channels is therefore:
            final_nc = channels(z) * 2 ** (spade_n_up - 2)
        Args:
            latent_dim (tuple): z's shape (only the number of channels matters)
            cond_nc (int): conditioning tensor's expected number of channels
            spade_n_up (int): Number of total upsamplings from z
            spade_use_spectral_norm (bool): use spectral normalization?
            spade_param_free_norm (str): norm to use before SPADE de-normalization
            spade_kernel_size (int): SPADE conv layers' kernel size
        Returns:
            [type]: [description]
        """
        super().__init__()

        latent_dim = opts.gen.p.latent_dim
        cond_nc = 3
        spade_n_up = opts.gen.p.spade_n_up
        spade_use_spectral_norm = opts.gen.p.spade_use_spectral_norm
        spade_param_free_norm = opts.gen.p.spade_param_free_norm
        spade_kernel_size = 3

        self.z_nc = latent_dim
        self.spade_n_up = spade_n_up

        self.z_h = self.z_w = None

        self.fc = nn.Conv2d(3, latent_dim, 3, padding=1)
        self.head_0 = SPADEResnetBlock(
            self.z_nc,
            self.z_nc,
            cond_nc,
            spade_use_spectral_norm,
            spade_param_free_norm,
            spade_kernel_size,
        )

        self.G_middle_0 = SPADEResnetBlock(
            self.z_nc,
            self.z_nc,
            cond_nc,
            spade_use_spectral_norm,
            spade_param_free_norm,
            spade_kernel_size,
        )
        self.G_middle_1 = SPADEResnetBlock(
            self.z_nc,
            self.z_nc,
            cond_nc,
            spade_use_spectral_norm,
            spade_param_free_norm,
            spade_kernel_size,
        )

        self.up_spades = nn.Sequential(
            *[
                SPADEResnetBlock(
                    self.z_nc // 2 ** i,
                    self.z_nc // 2 ** (i + 1),
                    cond_nc,
                    spade_use_spectral_norm,
                    spade_param_free_norm,
                    spade_kernel_size,
                )
                for i in range(spade_n_up - 2)
            ]
        )

        self.final_nc = self.z_nc // 2 ** (spade_n_up - 2)

        self.final_spade = SPADEResnetBlock(
            self.final_nc,
            self.final_nc,
            cond_nc,
            spade_use_spectral_norm,
            spade_param_free_norm,
            spade_kernel_size,
        )
        self.final_shortcut = None
        if opts.gen.p.use_final_shortcut:
            self.final_shortcut = nn.Sequential(
                *[
                    SpectralNorm(nn.Conv2d(self.final_nc, 3, 1)),
                    nn.BatchNorm2d(3),
                    nn.LeakyReLU(0.2, True),
                ]
            )

        self.conv_img = nn.Conv2d(self.final_nc, 3, 3, padding=1)

        self.upsample = InterpolateNearest2d(scale_factor=2)

    def set_latent_shape(self, shape, is_input=True):
        """
        Sets the latent shape to start the upsampling from, i.e. z_h and z_w.
        If is_input is True, then this is the actual input shape which should
        be divided by 2 ** spade_n_up
        Otherwise, just sets z_h and z_w from shape[-2] and shape[-1]

        Args:
            shape (tuple): The shape to start sampling from.
            is_input (bool, optional): Whether to divide shape by 2 ** spade_n_up
        """
        if isinstance(shape, (list, tuple)):
            self.z_h = shape[-2]
            self.z_w = shape[-1]
        elif isinstance(shape, int):
            self.z_h = self.z_w = shape
        else:
            raise ValueError("Unknown shape type:", shape)

        if is_input:
            self.z_h = self.z_h // (2 ** self.spade_n_up)
            self.z_w = self.z_w // (2 ** self.spade_n_up)

    def _apply(self, fn):
        # print("Applying SpadeDecoder", fn)
        super()._apply(fn)
        # self.head_0 = fn(self.head_0)
        # self.G_middle_0 = fn(self.G_middle_0)
        # self.G_middle_1 = fn(self.G_middle_1)
        # for i, up in enumerate(self.up_spades):
        #     self.up_spades[i] = fn(up)
        # self.conv_img = fn(self.conv_img)
        return self

    def forward(self, z, cond):
        if z is None:
            assert self.z_h is not None and self.z_w is not None
            z = self.fc(F.interpolate(cond, size=(self.z_h, self.z_w)))
        y = self.head_0(z, cond)
        y = self.upsample(y)
        y = self.G_middle_0(y, cond)
        y = self.upsample(y)
        y = self.G_middle_1(y, cond)

        for i, up in enumerate(self.up_spades):
            y = self.upsample(y)
            y = up(y, cond)

        if self.final_shortcut is not None:
            cond = self.final_shortcut(y)
        y = self.final_spade(y, cond)
        y = self.conv_img(F.leaky_relu(y, 2e-1))
        y = torch.tanh(y)
        return y

    def __str__(self):
        return strings.spadedecoder(self)