File size: 2,824 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# based on https://huggingface.co/spaces/NimaBoscarino/climategan/blob/main/app.py # noqa: E501
# thank you @NimaBoscarino

import os
import gradio as gr
import googlemaps
from skimage import io
from urllib import parse
from inferences import ClimateGAN


def predict(api_key):
    def _predict(*args):
        print("args: ", args)
        image = place = None
        if len(args) == 1:
            image = args[0]
        else:
            assert len(args) == 2, "Unknown number of inputs {}".format(len(args))
            image, place = args

        if api_key and place:
            geocode_result = gmaps.geocode(place)

            address = geocode_result[0]["formatted_address"]
            static_map_url = f"https://maps.googleapis.com/maps/api/streetview?size=640x640&location={parse.quote(address)}&source=outdoor&key={api_key}"
            img_np = io.imread(static_map_url)
        else:
            img_np = image
        flood, wildfire, smog = model.inference(img_np)
        return img_np, flood, wildfire, smog

    return _predict


if __name__ == "__main__":

    api_key = os.environ.get("GMAPS_API_KEY")
    gmaps = None
    if api_key is not None:
        gmaps = googlemaps.Client(key=api_key)

    model = ClimateGAN(model_path="config/model/masker")

    inputs = inputs = [gr.inputs.Image(label="Input Image")]
    if api_key:
        inputs += [gr.inputs.Textbox(label="Address or place name")]

    gr.Interface(
        predict(api_key),
        inputs=[
            gr.inputs.Textbox(label="Address or place name"),
            gr.inputs.Image(label="Input Image"),
        ],
        outputs=[
            gr.outputs.Image(type="numpy", label="Original image"),
            gr.outputs.Image(type="numpy", label="Flooding"),
            gr.outputs.Image(type="numpy", label="Wildfire"),
            gr.outputs.Image(type="numpy", label="Smog"),
        ],
        title="ClimateGAN: Visualize Climate Change",
        description='Climate change does not impact everyone equally. This Space shows the effects of the climate emergency, "one address at a time". Visit the original experience at <a href="https://thisclimatedoesnotexist.com/">ThisClimateDoesNotExist.com</a>.<br>Enter an address or place name, and ClimateGAN will generate images showing how the location could be impacted by flooding, wildfires, or smog.',  # noqa: E501
        article="<p style='text-align: center'>This project is an unofficial clone of <a href='https://thisclimatedoesnotexist.com/'>ThisClimateDoesNotExist</a> | <a href='https://github.com/cc-ai/climategan'>ClimateGAN GitHub Repo</a></p>",  # noqa: E501
        # examples=[
        #     "Vancouver Art Gallery",
        #     "Chicago Bean",
        #     "Duomo Siracusa",
        # ],
        css=".footer{display:none !important}",
    ).launch()