File size: 12,764 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""Discriminator architecture for ClimateGAN's GAN components (a and t)
"""
import functools

import torch
import torch.nn as nn

from climategan.blocks import SpectralNorm
from climategan.tutils import init_weights

# from torch.optim import lr_scheduler

# mainly from https://github.com/sangwoomo/instagan/blob/master/models/networks.py


def create_discriminator(opts, device, no_init=False, verbose=0):
    disc = OmniDiscriminator(opts)
    if no_init:
        return disc

    for task, model in disc.items():
        if isinstance(model, nn.ModuleDict):
            for domain, domain_model in model.items():
                init_weights(
                    domain_model,
                    init_type=opts.dis[task].init_type,
                    init_gain=opts.dis[task].init_gain,
                    verbose=verbose,
                    caller=f"create_discriminator {task} {domain}",
                )
        else:
            init_weights(
                model,
                init_type=opts.dis[task].init_type,
                init_gain=opts.dis[task].init_gain,
                verbose=verbose,
                caller=f"create_discriminator {task}",
            )
    return disc.to(device)


def define_D(
    input_nc,
    ndf,
    n_layers=3,
    norm="batch",
    use_sigmoid=False,
    get_intermediate_features=False,
    num_D=1,
):
    norm_layer = get_norm_layer(norm_type=norm)
    net = MultiscaleDiscriminator(
        input_nc,
        ndf,
        n_layers=n_layers,
        norm_layer=norm_layer,
        use_sigmoid=use_sigmoid,
        get_intermediate_features=get_intermediate_features,
        num_D=num_D,
    )
    return net


def get_norm_layer(norm_type="instance"):
    if not norm_type:
        print("norm_type is {}, defaulting to instance")
        norm_type = "instance"
    if norm_type == "batch":
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
    elif norm_type == "instance":
        norm_layer = functools.partial(
            nn.InstanceNorm2d, affine=False, track_running_stats=False
        )
    elif norm_type == "none":
        norm_layer = None
    else:
        raise NotImplementedError("normalization layer [%s] is not found" % norm_type)
    return norm_layer


# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
    def __init__(
        self,
        input_nc=3,
        ndf=64,
        n_layers=3,
        norm_layer=nn.BatchNorm2d,
        use_sigmoid=False,
        get_intermediate_features=True,
    ):
        super(NLayerDiscriminator, self).__init__()
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d

        self.get_intermediate_features = get_intermediate_features

        kw = 4
        padw = 1
        sequence = [
            [
                # Use spectral normalization
                SpectralNorm(
                    nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw)
                ),
                nn.LeakyReLU(0.2, True),
            ]
        ]

        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** n, 8)
            sequence += [
                [
                    # Use spectral normalization
                    SpectralNorm(  # TODO replace with Conv2dBlock
                        nn.Conv2d(
                            ndf * nf_mult_prev,
                            ndf * nf_mult,
                            kernel_size=kw,
                            stride=2,
                            padding=padw,
                            bias=use_bias,
                        )
                    ),
                    norm_layer(ndf * nf_mult),
                    nn.LeakyReLU(0.2, True),
                ]
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8)
        sequence += [
            [
                # Use spectral normalization
                SpectralNorm(
                    nn.Conv2d(
                        ndf * nf_mult_prev,
                        ndf * nf_mult,
                        kernel_size=kw,
                        stride=1,
                        padding=padw,
                        bias=use_bias,
                    )
                ),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True),
            ]
        ]

        # Use spectral normalization
        sequence += [
            [
                SpectralNorm(
                    nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)
                )
            ]
        ]

        if use_sigmoid:
            sequence += [[nn.Sigmoid()]]

        # We divide the layers into groups to extract intermediate layer outputs
        for n in range(len(sequence)):
            self.add_module("model" + str(n), nn.Sequential(*sequence[n]))
        # self.model = nn.Sequential(*sequence)

    def forward(self, input):
        results = [input]
        for submodel in self.children():
            intermediate_output = submodel(results[-1])
            results.append(intermediate_output)

        get_intermediate_features = self.get_intermediate_features
        if get_intermediate_features:
            return results[1:]
        else:
            return results[-1]


#    def forward(self, input):
#        return self.model(input)


# Source: https://github.com/NVIDIA/pix2pixHD
class MultiscaleDiscriminator(nn.Module):
    def __init__(
        self,
        input_nc=3,
        ndf=64,
        n_layers=3,
        norm_layer=nn.BatchNorm2d,
        use_sigmoid=False,
        get_intermediate_features=True,
        num_D=3,
    ):
        super(MultiscaleDiscriminator, self).__init__()
        # self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,
        #         use_sigmoid=False, num_D=3, getIntermFeat=False

        self.n_layers = n_layers
        self.ndf = ndf
        self.norm_layer = norm_layer
        self.use_sigmoid = use_sigmoid
        self.get_intermediate_features = get_intermediate_features
        self.num_D = num_D

        for i in range(self.num_D):
            netD = NLayerDiscriminator(
                input_nc=input_nc,
                ndf=self.ndf,
                n_layers=self.n_layers,
                norm_layer=self.norm_layer,
                use_sigmoid=self.use_sigmoid,
                get_intermediate_features=self.get_intermediate_features,
            )
            self.add_module("discriminator_%d" % i, netD)

        self.downsample = nn.AvgPool2d(
            3, stride=2, padding=[1, 1], count_include_pad=False
        )

    def forward(self, input):
        result = []
        get_intermediate_features = self.get_intermediate_features
        for name, D in self.named_children():
            if "discriminator" not in name:
                continue
            out = D(input)
            if not get_intermediate_features:
                out = [out]
            result.append(out)
            input = self.downsample(input)

        return result


class OmniDiscriminator(nn.ModuleDict):
    def __init__(self, opts):
        super().__init__()
        if "p" in opts.tasks:
            if opts.dis.p.use_local_discriminator:

                self["p"] = nn.ModuleDict(
                    {
                        "global": define_D(
                            input_nc=3,
                            ndf=opts.dis.p.ndf,
                            n_layers=opts.dis.p.n_layers,
                            norm=opts.dis.p.norm,
                            use_sigmoid=opts.dis.p.use_sigmoid,
                            get_intermediate_features=opts.dis.p.get_intermediate_features,  # noqa: E501
                            num_D=opts.dis.p.num_D,
                        ),
                        "local": define_D(
                            input_nc=3,
                            ndf=opts.dis.p.ndf,
                            n_layers=opts.dis.p.n_layers,
                            norm=opts.dis.p.norm,
                            use_sigmoid=opts.dis.p.use_sigmoid,
                            get_intermediate_features=opts.dis.p.get_intermediate_features,  # noqa: E501
                            num_D=opts.dis.p.num_D,
                        ),
                    }
                )
            else:
                self["p"] = define_D(
                    input_nc=4,  # image + mask
                    ndf=opts.dis.p.ndf,
                    n_layers=opts.dis.p.n_layers,
                    norm=opts.dis.p.norm,
                    use_sigmoid=opts.dis.p.use_sigmoid,
                    get_intermediate_features=opts.dis.p.get_intermediate_features,
                    num_D=opts.dis.p.num_D,
                )
        if "m" in opts.tasks:
            if opts.gen.m.use_advent:
                if opts.dis.m.architecture == "base":
                    if opts.dis.m.gan_type == "WGAN_norm":
                        self["m"] = nn.ModuleDict(
                            {
                                "Advent": get_fc_discriminator(
                                    num_classes=2, use_norm=True
                                )
                            }
                        )
                    else:
                        self["m"] = nn.ModuleDict(
                            {
                                "Advent": get_fc_discriminator(
                                    num_classes=2, use_norm=False
                                )
                            }
                        )
                elif opts.dis.m.architecture == "OmniDiscriminator":
                    self["m"] = nn.ModuleDict(
                        {
                            "Advent": define_D(
                                input_nc=2,
                                ndf=opts.dis.m.ndf,
                                n_layers=opts.dis.m.n_layers,
                                norm=opts.dis.m.norm,
                                use_sigmoid=opts.dis.m.use_sigmoid,
                                get_intermediate_features=opts.dis.m.get_intermediate_features,  # noqa: E501
                                num_D=opts.dis.m.num_D,
                            )
                        }
                    )
                else:
                    raise Exception("This Discriminator is currently not supported!")
        if "s" in opts.tasks:
            if opts.gen.s.use_advent:
                if opts.dis.s.gan_type == "WGAN_norm":
                    self["s"] = nn.ModuleDict(
                        {"Advent": get_fc_discriminator(num_classes=11, use_norm=True)}
                    )
                else:
                    self["s"] = nn.ModuleDict(
                        {"Advent": get_fc_discriminator(num_classes=11, use_norm=False)}
                    )


def get_fc_discriminator(num_classes=2, ndf=64, use_norm=False):
    if use_norm:
        return torch.nn.Sequential(
            SpectralNorm(
                torch.nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1)
            ),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            SpectralNorm(
                torch.nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1)
            ),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            SpectralNorm(
                torch.nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2, padding=1)
            ),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            SpectralNorm(
                torch.nn.Conv2d(ndf * 4, ndf * 8, kernel_size=4, stride=2, padding=1)
            ),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            SpectralNorm(
                torch.nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=2, padding=1)
            ),
        )
    else:
        return torch.nn.Sequential(
            torch.nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            torch.nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            torch.nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2, padding=1),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            torch.nn.Conv2d(ndf * 4, ndf * 8, kernel_size=4, stride=2, padding=1),
            torch.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            torch.nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=2, padding=1),
        )