File size: 16,266 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
from pathlib import Path

import numpy as np
import torch
import torchvision.utils as vutils
from addict import Dict
from PIL import Image
from torch.nn.functional import interpolate, sigmoid

from climategan.data import decode_segmap_merged_labels
from climategan.tutils import (
    all_texts_to_tensors,
    decode_bucketed_depth,
    normalize_tensor,
    write_architecture,
)
from climategan.utils import flatten_opts


class Logger:
    def __init__(self, trainer):
        self.losses = Dict()
        self.time = Dict()
        self.trainer = trainer
        self.global_step = 0
        self.epoch = 0

    def log_comet_images(self, mode, domain, minimal=False, all_only=False):
        trainer = self.trainer
        save_images = {}
        all_images = []
        n_all_ims = None
        all_legends = ["Input"]
        task_legends = {}

        if domain not in trainer.display_images[mode]:
            return

        # --------------------
        # -----  Masker  -----
        # --------------------
        n_ims = len(trainer.display_images[mode][domain])
        print(" " * 60, end="\r")
        if domain != "rf":
            for j, display_dict in enumerate(trainer.display_images[mode][domain]):

                print(f"Inferring sample {mode} {domain} {j+1}/{n_ims}", end="\r")

                x = display_dict["data"]["x"].unsqueeze(0).to(trainer.device)
                z = trainer.G.encode(x)

                s_pred = decoded_s_pred = d_pred = z_depth = None
                for k, task in enumerate(["d", "s", "m"]):

                    if (
                        task not in display_dict["data"]
                        or task not in trainer.opts.tasks
                    ):
                        continue

                    task_legend = ["Input"]
                    target = display_dict["data"][task]
                    target = target.unsqueeze(0).to(trainer.device)
                    task_saves = []

                    if task not in save_images:
                        save_images[task] = []

                    prediction = None
                    if task == "m":
                        cond = None
                        if s_pred is not None and d_pred is not None:
                            cond = trainer.G.make_m_cond(d_pred, s_pred, x)

                        prediction = trainer.G.decoders[task](z, cond, z_depth)
                    elif task == "d":
                        prediction, z_depth = trainer.G.decoders[task](z)
                    elif task == "s":
                        prediction = trainer.G.decoders[task](z, z_depth)

                    if task == "s":
                        # Log fire
                        wildfire_tens = trainer.compute_fire(x, prediction)
                        task_saves.append(wildfire_tens)
                        task_legend.append("Wildfire")
                        # Log seg output
                        s_pred = prediction.clone()
                        target = (
                            decode_segmap_merged_labels(target, domain, True)
                            .float()
                            .to(trainer.device)
                        )
                        prediction = (
                            decode_segmap_merged_labels(prediction, domain, False)
                            .float()
                            .to(trainer.device)
                        )
                        decoded_s_pred = prediction
                        task_saves.append(target)
                        task_legend.append("Target Segmentation")

                    elif task == "m":
                        prediction = sigmoid(prediction).repeat(1, 3, 1, 1)
                        task_saves.append(x * (1.0 - prediction))
                        if not minimal:
                            task_saves.append(
                                x * (1.0 - (prediction > 0.1).to(torch.int))
                            )
                            task_saves.append(
                                x * (1.0 - (prediction > 0.5).to(torch.int))
                            )

                        task_saves.append(x * (1.0 - target.repeat(1, 3, 1, 1)))
                        task_legend.append("Masked input")

                        if not minimal:
                            task_legend.append("Masked input (>0.1)")
                            task_legend.append("Masked input (>0.5)")

                        task_legend.append("Masked input (target)")
                        # dummy pixels to fool scaling and preserve mask range
                        prediction[:, :, 0, 0] = 1.0
                        prediction[:, :, -1, -1] = 0.0

                    elif task == "d":
                        # prediction is a log depth tensor
                        d_pred = prediction
                        target = normalize_tensor(target) * 255
                        if prediction.shape[1] > 1:
                            prediction = decode_bucketed_depth(
                                prediction, self.trainer.opts
                            )
                        smogged = self.trainer.compute_smog(
                            x, d=prediction, s=decoded_s_pred, use_sky_seg=False
                        )
                        prediction = normalize_tensor(prediction)
                        prediction = prediction.repeat(1, 3, 1, 1)
                        task_saves.append(smogged)
                        task_legend.append("Smogged")
                        task_saves.append(target.repeat(1, 3, 1, 1))
                        task_legend.append("Depth target")

                    task_saves.append(prediction)
                    task_legend.append(f"Predicted {task}")

                    save_images[task].append(x.cpu().detach())
                    if k == 0:
                        all_images.append(save_images[task][-1])

                    task_legends[task] = task_legend
                    if j == 0:
                        all_legends += task_legend[1:]

                    for im in task_saves:
                        save_images[task].append(im.cpu().detach())
                        all_images.append(save_images[task][-1])

                if j == 0:
                    n_all_ims = len(all_images)

            if not all_only:
                for task in save_images.keys():
                    # Write images:
                    self.upload_images(
                        image_outputs=save_images[task],
                        mode=mode,
                        domain=domain,
                        task=task,
                        im_per_row=trainer.opts.comet.im_per_row.get(task, 4),
                        rows_per_log=trainer.opts.comet.get("rows_per_log", 5),
                        legends=task_legends[task],
                    )

            if len(save_images) > 1:
                self.upload_images(
                    image_outputs=all_images,
                    mode=mode,
                    domain=domain,
                    task="all",
                    im_per_row=n_all_ims,
                    rows_per_log=trainer.opts.comet.get("rows_per_log", 5),
                    legends=all_legends,
                )
        # ---------------------
        # -----  Painter  -----
        # ---------------------
        else:
            # in the rf domain display_size may be different from fid.n_images
            limit = trainer.opts.comet.display_size
            image_outputs = []
            legends = []
            for im_set in trainer.display_images[mode][domain][:limit]:
                x = im_set["data"]["x"].unsqueeze(0).to(trainer.device)
                m = im_set["data"]["m"].unsqueeze(0).to(trainer.device)

                prediction = trainer.G.paint(m, x)

                image_outputs.append(x * (1.0 - m))
                image_outputs.append(prediction)
                image_outputs.append(x)
                image_outputs.append(prediction * m)
                if not legends:
                    legends.append("Masked Input")
                    legends.append("Painted Input")
                    legends.append("Input")
                    legends.append("Isolated Water")
            # Write images
            self.upload_images(
                image_outputs=image_outputs,
                mode=mode,
                domain=domain,
                task="painter",
                im_per_row=trainer.opts.comet.im_per_row.get("p", 4),
                rows_per_log=trainer.opts.comet.get("rows_per_log", 5),
                legends=legends,
            )

        return 0

    def log_losses(self, model_to_update="G", mode="train"):
        """Logs metrics on comet.ml

        Args:
            model_to_update (str, optional): One of "G", "D". Defaults to "G".
        """
        trainer = self.trainer
        loss_names = {"G": "gen", "D": "disc"}

        if trainer.opts.train.log_level < 1:
            return

        if trainer.exp is None:
            return

        assert model_to_update in {
            "G",
            "D",
        }, "unknown model to log losses {}".format(model_to_update)

        loss_to_update = self.losses[loss_names[model_to_update]]

        losses = loss_to_update.copy()

        if trainer.opts.train.log_level == 1:
            # Only log aggregated losses: delete other keys in losses
            for k in loss_to_update:
                if k not in {"masker", "total_loss", "painter"}:
                    del losses[k]
        # convert losses into a single-level dictionnary

        losses = flatten_opts(losses)
        trainer.exp.log_metrics(
            losses, prefix=f"{model_to_update}_{mode}", step=self.global_step
        )

    def log_learning_rates(self):
        if self.trainer.exp is None:
            return
        lrs = {}
        trainer = self.trainer
        if trainer.g_scheduler is not None:
            for name, lr in zip(
                trainer.lr_names["G"], trainer.g_scheduler.get_last_lr()
            ):
                lrs[f"lr_G_{name}"] = lr
        if trainer.d_scheduler is not None:
            for name, lr in zip(
                trainer.lr_names["D"], trainer.d_scheduler.get_last_lr()
            ):
                lrs[f"lr_D_{name}"] = lr

        trainer.exp.log_metrics(lrs, step=self.global_step)

    def log_step_time(self, time):
        """Logs step-time on comet.ml

        Args:
            step_time (float): step-time in seconds
        """
        if self.trainer.exp:
            self.trainer.exp.log_metric(
                "step-time", time - self.time.step_start, step=self.global_step
            )

    def log_epoch_time(self, time):
        """Logs step-time on comet.ml

        Args:
            step_time (float): step-time in seconds
        """
        if self.trainer.exp:
            self.trainer.exp.log_metric(
                "epoch-time", time - self.time.epoch_start, step=self.global_step
            )

    def log_comet_combined_images(self, mode, domain):

        trainer = self.trainer
        image_outputs = []
        legends = []
        im_per_row = 0
        for i, im_set in enumerate(trainer.display_images[mode][domain]):
            x = im_set["data"]["x"].unsqueeze(0).to(trainer.device)
            # m = im_set["data"]["m"].unsqueeze(0).to(trainer.device)

            m = trainer.G.mask(x=x)
            m_bin = (m > 0.5).to(m.dtype)
            prediction = trainer.G.paint(m, x)
            prediction_bin = trainer.G.paint(m_bin, x)

            image_outputs.append(x)
            legends.append("Input")
            image_outputs.append(x * (1.0 - m))
            legends.append("Soft Masked Input")
            image_outputs.append(prediction)
            legends.append("Painted")
            image_outputs.append(prediction * m)
            legends.append("Soft Masked Painted")
            image_outputs.append(x * (1.0 - m_bin))
            legends.append("Binary (0.5) Masked Input")
            image_outputs.append(prediction_bin)
            legends.append("Binary (0.5) Painted")
            image_outputs.append(prediction_bin * m_bin)
            legends.append("Binary (0.5) Masked Painted")

            if i == 0:
                im_per_row = len(image_outputs)
        # Upload images
        self.upload_images(
            image_outputs=image_outputs,
            mode=mode,
            domain=domain,
            task="combined",
            im_per_row=im_per_row or 7,
            rows_per_log=trainer.opts.comet.get("rows_per_log", 5),
            legends=legends,
        )

        return 0

    def upload_images(
        self,
        image_outputs,
        mode,
        domain,
        task,
        im_per_row=3,
        rows_per_log=5,
        legends=[],
    ):
        """
        Save output image

        Args:
            image_outputs (list(torch.Tensor)): all the images to log
            mode (str): train or val
            domain (str): current domain
            task (str): current task
            im_per_row (int, optional): umber of images to be displayed per row.
                Typically, for a given task: 3 because [input prediction, target].
                Defaults to 3.
            rows_per_log (int, optional): Number of rows (=samples) per uploaded image.
                Defaults to 5.
            comet_exp (comet_ml.Experiment, optional): experiment to use.
                Defaults to None.
        """
        trainer = self.trainer
        if trainer.exp is None:
            return
        curr_iter = self.global_step
        nb_per_log = im_per_row * rows_per_log
        n_logs = len(image_outputs) // nb_per_log + 1

        header = None
        if len(legends) == im_per_row and all(isinstance(t, str) for t in legends):
            header_width = max(im.shape[-1] for im in image_outputs)
            headers = all_texts_to_tensors(legends, width=header_width)
            header = torch.cat(headers, dim=-1)

        for logidx in range(n_logs):
            print(" " * 100, end="\r", flush=True)
            print(
                "Uploading images for {} {} {} {}/{}".format(
                    mode, domain, task, logidx + 1, n_logs
                ),
                end="...",
                flush=True,
            )
            ims = image_outputs[logidx * nb_per_log : (logidx + 1) * nb_per_log]
            if not ims:
                continue

            ims = self.upsample(ims)
            ims = torch.stack([im.squeeze() for im in ims]).squeeze()
            image_grid = vutils.make_grid(
                ims, nrow=im_per_row, normalize=True, scale_each=True, padding=0
            )

            if header is not None:
                image_grid = torch.cat(
                    [header.to(image_grid.device), image_grid], dim=1
                )

            image_grid = image_grid.permute(1, 2, 0).cpu().numpy()
            trainer.exp.log_image(
                Image.fromarray((image_grid * 255).astype(np.uint8)),
                name=f"{mode}_{domain}_{task}_{str(curr_iter)}_#{logidx}",
                step=curr_iter,
            )

    def upsample(self, ims):
        h = max(im.shape[-2] for im in ims)
        w = max(im.shape[-1] for im in ims)
        new_ims = []
        for im in ims:
            im = interpolate(im, (h, w), mode="bilinear")
            new_ims.append(im)
        return new_ims

    def padd(self, ims):
        h = max(im.shape[-2] for im in ims)
        w = max(im.shape[-1] for im in ims)
        new_ims = []
        for im in ims:
            ih = im.shape[-2]
            iw = im.shape[-1]
            if ih != h or iw != w:
                padded = torch.zeros(im.shape[-3], h, w)
                padded[
                    :, (h - ih) // 2 : (h + ih) // 2, (w - iw) // 2 : (w + iw) // 2
                ] = im
                new_ims.append(padded)
            else:
                new_ims.append(im)

        return new_ims

    def log_architecture(self):
        write_architecture(self.trainer)

        if self.trainer.exp is None:
            return

        for f in Path(self.trainer.opts.output_path).glob("archi*.txt"):
            self.trainer.exp.log_asset(str(f), overwrite=True)