File size: 20,448 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
"""Data transforms for the loaders
"""
import random
import traceback
from pathlib import Path

import numpy as np
import torch
import torch.nn.functional as F
from skimage.color import rgba2rgb
from skimage.io import imread
from torchvision import transforms as trsfs
from torchvision.transforms.functional import (
    adjust_brightness,
    adjust_contrast,
    adjust_saturation,
)

from climategan.tutils import normalize


def interpolation(task):
    if task in ["d", "m", "s"]:
        return {"mode": "nearest"}
    else:
        return {"mode": "bilinear", "align_corners": True}


class Resize:
    def __init__(self, target_size, keep_aspect_ratio=False):
        """
        Resize transform. Target_size can be an int or a tuple of ints,
        depending on whether both height and width should have the same
        final size or not.

        If keep_aspect_ratio is specified then target_size must be an int:
        the smallest dimension of x will be set to target_size and the largest
        dimension will be computed to the closest int keeping the original
        aspect ratio. e.g.
        >>> x = torch.rand(1, 3, 1200, 1800)
        >>> m = torch.rand(1, 1, 600, 600)
        >>> d = {"x": x, "m": m}
        >>> {k: v.shape for k, v in Resize(640, True)(d).items()}
         {"x": (1, 3, 640, 960), "m": (1, 1, 640, 960)}



        Args:
            target_size (int | tuple(int)): New size for the tensor
            keep_aspect_ratio (bool, optional): Whether or not to keep aspect ratio
                when resizing. Requires target_size to be an int. If keeping aspect
                ratio, smallest dim will be set to target_size. Defaults to False.
        """
        if isinstance(target_size, (int, tuple, list)):
            if not isinstance(target_size, int) and not keep_aspect_ratio:
                assert len(target_size) == 2
                self.h, self.w = target_size
            else:
                if keep_aspect_ratio:
                    assert isinstance(target_size, int)
                self.h = self.w = target_size

            self.default_h = int(self.h)
            self.default_w = int(self.w)
            self.sizes = {}
        elif isinstance(target_size, dict):
            assert (
                not keep_aspect_ratio
            ), "dict target_size not compatible with keep_aspect_ratio"

            self.sizes = {
                k: {"h": v, "w": v} for k, v in target_size.items() if k != "default"
            }
            self.default_h = int(target_size["default"])
            self.default_w = int(target_size["default"])

        self.keep_aspect_ratio = keep_aspect_ratio

    def compute_new_default_size(self, tensor):
        """
        compute the new size for a tensor depending on target size
        and keep_aspect_rato

        Args:
            tensor (torch.Tensor): 4D tensor N x C x H x W.

        Returns:
            tuple(int): (new_height, new_width)
        """
        if self.keep_aspect_ratio:
            h, w = tensor.shape[-2:]
            if h < w:
                return (self.h, int(self.default_h * w / h))
            else:
                return (int(self.default_h * h / w), self.default_w)
        return (self.default_h, self.default_w)

    def compute_new_size_for_task(self, task):
        assert (
            not self.keep_aspect_ratio
        ), "compute_new_size_for_task is not compatible with keep aspect ratio"

        if task not in self.sizes:
            return (self.default_h, self.default_w)

        return (self.sizes[task]["h"], self.sizes[task]["w"])

    def __call__(self, data):
        """
        Resize a dict of tensors to the "x" key's new_size

        Args:
            data (dict[str:torch.Tensor]): The data dict to transform

        Returns:
            dict[str: torch.Tensor]: dict with all tensors resized to the
                new size of the data["x"] tensor
        """
        task = tensor = new_size = None
        try:
            if not self.sizes:
                d = {}
                new_size = self.compute_new_default_size(
                    data["x"] if "x" in data else list(data.values())[0]
                )
                for task, tensor in data.items():
                    d[task] = F.interpolate(
                        tensor, size=new_size, **interpolation(task)
                    )
                return d

            d = {}
            for task, tensor in data.items():
                new_size = self.compute_new_size_for_task(task)
                d[task] = F.interpolate(tensor, size=new_size, **interpolation(task))
            return d

        except Exception as e:
            tb = traceback.format_exc()
            print("Debug: task, shape, interpolation, h, w, new_size")
            print(task)
            print(tensor.shape)
            print(interpolation(task))
            print(self.h, self.w)
            print(new_size)
            print(tb)
            raise Exception(e)


class RandomCrop:
    def __init__(self, size, center=False):
        assert isinstance(size, (int, tuple, list))
        if not isinstance(size, int):
            assert len(size) == 2
            self.h, self.w = size
        else:
            self.h = self.w = size

        self.h = int(self.h)
        self.w = int(self.w)
        self.center = center

    def __call__(self, data):
        H, W = (
            data["x"].size()[-2:] if "x" in data else list(data.values())[0].size()[-2:]
        )

        if not self.center:
            top = np.random.randint(0, H - self.h)
            left = np.random.randint(0, W - self.w)
        else:
            top = (H - self.h) // 2
            left = (W - self.w) // 2

        return {
            task: tensor[:, :, top : top + self.h, left : left + self.w]
            for task, tensor in data.items()
        }


class RandomHorizontalFlip:
    def __init__(self, p=0.5):
        # self.flip = TF.hflip
        self.p = p

    def __call__(self, data):
        if np.random.rand() > self.p:
            return data
        return {task: torch.flip(tensor, [3]) for task, tensor in data.items()}


class ToTensor:
    def __init__(self):
        self.ImagetoTensor = trsfs.ToTensor()
        self.MaptoTensor = self.ImagetoTensor

    def __call__(self, data):
        new_data = {}
        for task, im in data.items():
            if task in {"x", "a"}:
                new_data[task] = self.ImagetoTensor(im)
            elif task in {"m"}:
                new_data[task] = self.MaptoTensor(im)
            elif task == "s":
                new_data[task] = torch.squeeze(torch.from_numpy(np.array(im))).to(
                    torch.int64
                )
            elif task == "d":
                new_data = im

        return new_data


class Normalize:
    def __init__(self, opts):
        if opts.data.normalization == "HRNet":
            self.normImage = trsfs.Normalize(
                ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
            )
        else:
            self.normImage = trsfs.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        self.normDepth = lambda x: x
        self.normMask = lambda x: x
        self.normSeg = lambda x: x

        self.normalize = {
            "x": self.normImage,
            "s": self.normSeg,
            "d": self.normDepth,
            "m": self.normMask,
        }

    def __call__(self, data):
        return {
            task: self.normalize.get(task, lambda x: x)(tensor.squeeze(0))
            for task, tensor in data.items()
        }


class RandBrightness:  # Input need to be between -1 and 1
    def __call__(self, data):
        return {
            task: rand_brightness(tensor) if task == "x" else tensor
            for task, tensor in data.items()
        }


class RandSaturation:
    def __call__(self, data):
        return {
            task: rand_saturation(tensor) if task == "x" else tensor
            for task, tensor in data.items()
        }


class RandContrast:
    def __call__(self, data):
        return {
            task: rand_contrast(tensor) if task == "x" else tensor
            for task, tensor in data.items()
        }


class BucketizeDepth:
    def __init__(self, opts, domain):
        self.domain = domain

        if opts.gen.d.classify.enable and domain in {"s", "kitti"}:
            self.buckets = torch.linspace(
                *[
                    opts.gen.d.classify.linspace.min,
                    opts.gen.d.classify.linspace.max,
                    opts.gen.d.classify.linspace.buckets - 1,
                ]
            )

            self.transforms = {
                "d": lambda tensor: torch.bucketize(
                    tensor, self.buckets, out_int32=True, right=True
                )
            }
        else:
            self.transforms = {}

    def __call__(self, data):
        return {
            task: self.transforms.get(task, lambda x: x)(tensor)
            for task, tensor in data.items()
        }


class PrepareInference:
    """
    Transform which:
      - transforms a str or an array into a tensor
      - resizes the image to keep the aspect ratio
      - crops in the center of the resized image
      - normalize to 0:1
      - rescale to -1:1
    """

    def __init__(self, target_size=640, half=False, is_label=False, enforce_128=True):
        if enforce_128:
            if target_size % 2 ** 7 != 0:
                raise ValueError(
                    f"Received a target_size of {target_size}, which is not a "
                    + "multiple of 2^7 = 128. Set enforce_128 to False to disable "
                    + "this error."
                )
        self.resize = Resize(target_size, keep_aspect_ratio=True)
        self.crop = RandomCrop((target_size, target_size), center=True)
        self.half = half
        self.is_label = is_label

    def process(self, t):
        if isinstance(t, (str, Path)):
            t = imread(str(t))

        if isinstance(t, np.ndarray):
            if t.shape[-1] == 4:
                t = rgba2rgb(t)

            t = torch.from_numpy(t)
            if t.ndim == 3:
                t = t.permute(2, 0, 1)

        if t.ndim == 3:
            t = t.unsqueeze(0)
        elif t.ndim == 2:
            t = t.unsqueeze(0).unsqueeze(0)

        if not self.is_label:
            t = t.to(torch.float32)
            t = normalize(t)
            t = (t - 0.5) * 2

        t = {"m": t} if self.is_label else {"x": t}
        t = self.resize(t)
        t = self.crop(t)
        t = t["m"] if self.is_label else t["x"]

        if self.half and not self.is_label:
            t = t.half()

        return t

    def __call__(self, x):
        """
        normalize, rescale, resize, crop in the center

        x can be: dict {"task": data} list [data, ..] or data
        data ^ can be a str, a Path, a numpy arrray or a Tensor
        """
        if isinstance(x, dict):
            return {k: self.process(v) for k, v in x.items()}

        if isinstance(x, list):
            return [self.process(t) for t in x]

        return self.process(x)


class PrepareTest:
    """
    Transform which:
      - transforms a str or an array into a tensor
      - resizes the image to keep the aspect ratio
      - crops in the center of the resized image
      - normalize to 0:1 (optional)
      - rescale to -1:1 (optional)
    """

    def __init__(self, target_size=640, half=False):
        self.resize = Resize(target_size, keep_aspect_ratio=True)
        self.crop = RandomCrop((target_size, target_size), center=True)
        self.half = half

    def process(self, t, normalize=False, rescale=False):
        if isinstance(t, (str, Path)):
            # t = img_as_float(imread(str(t)))
            t = imread(str(t))
            if t.shape[-1] == 4:
                # t = rgba2rgb(t)
                t = t[:, :, :3]
            if np.ndim(t) == 2:
                t = np.repeat(t[:, :, np.newaxis], 3, axis=2)

        if isinstance(t, np.ndarray):
            t = torch.from_numpy(t)
            t = t.permute(2, 0, 1)

        if len(t.shape) == 3:
            t = t.unsqueeze(0)

        t = t.to(torch.float32)
        normalize(t) if normalize else t
        (t - 0.5) * 2 if rescale else t
        t = {"x": t}
        t = self.resize(t)
        t = self.crop(t)
        t = t["x"]

        if self.half:
            return t.to(torch.float16)

        return t

    def __call__(self, x, normalize=False, rescale=False):
        """
        Call process()

        x can be: dict {"task": data} list [data, ..] or data
        data ^ can be a str, a Path, a numpy arrray or a Tensor
        """
        if isinstance(x, dict):
            return {k: self.process(v, normalize, rescale) for k, v in x.items()}

        if isinstance(x, list):
            return [self.process(t, normalize, rescale) for t in x]

        return self.process(x, normalize, rescale)


def get_transform(transform_item, mode):
    """Returns the torchivion transform function associated to a
    transform_item listed in opts.data.transforms ; transform_item is
    an addict.Dict
    """

    if transform_item.name == "crop" and not (
        transform_item.ignore is True or transform_item.ignore == mode
    ):
        return RandomCrop(
            (transform_item.height, transform_item.width),
            center=transform_item.center == mode,
        )

    elif transform_item.name == "resize" and not (
        transform_item.ignore is True or transform_item.ignore == mode
    ):
        return Resize(
            transform_item.new_size, transform_item.get("keep_aspect_ratio", False)
        )

    elif transform_item.name == "hflip" and not (
        transform_item.ignore is True or transform_item.ignore == mode
    ):
        return RandomHorizontalFlip(p=transform_item.p or 0.5)

    elif transform_item.name == "brightness" and not (
        transform_item.ignore is True or transform_item.ignore == mode
    ):
        return RandBrightness()

    elif transform_item.name == "saturation" and not (
        transform_item.ignore is True or transform_item.ignore == mode
    ):
        return RandSaturation()

    elif transform_item.name == "contrast" and not (
        transform_item.ignore is True or transform_item.ignore == mode
    ):
        return RandContrast()

    elif transform_item.ignore is True or transform_item.ignore == mode:
        return None

    raise ValueError("Unknown transform_item {}".format(transform_item))


def get_transforms(opts, mode, domain):
    """Get all the transform functions listed in opts.data.transforms
    using get_transform(transform_item, mode)
    """
    transforms = []
    color_jittering_transforms = ["brightness", "saturation", "contrast"]

    for t in opts.data.transforms:
        if t.name not in color_jittering_transforms:
            transforms.append(get_transform(t, mode))

    if "p" not in opts.tasks and mode == "train":
        for t in opts.data.transforms:
            if t.name in color_jittering_transforms:
                transforms.append(get_transform(t, mode))

    transforms += [Normalize(opts), BucketizeDepth(opts, domain)]
    transforms = [t for t in transforms if t is not None]

    return transforms


# ----- Adapted functions from https://github.com/mit-han-lab/data-efficient-gans -----#
def rand_brightness(tensor, is_diff_augment=False):
    if is_diff_augment:
        assert len(tensor.shape) == 4
        type_ = tensor.dtype
        device_ = tensor.device
        rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
        return tensor + (rand_tens - 0.5)
    else:
        factor = random.uniform(0.5, 1.5)
        tensor = adjust_brightness(tensor, brightness_factor=factor)
        # dummy pixels to fool scaling and preserve range
        tensor[:, :, 0, 0] = 1.0
        tensor[:, :, -1, -1] = 0.0
        return tensor


def rand_saturation(tensor, is_diff_augment=False):
    if is_diff_augment:
        assert len(tensor.shape) == 4
        type_ = tensor.dtype
        device_ = tensor.device
        rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
        x_mean = tensor.mean(dim=1, keepdim=True)
        return (tensor - x_mean) * (rand_tens * 2) + x_mean
    else:
        factor = random.uniform(0.5, 1.5)
        tensor = adjust_saturation(tensor, saturation_factor=factor)
        # dummy pixels to fool scaling and preserve range
        tensor[:, :, 0, 0] = 1.0
        tensor[:, :, -1, -1] = 0.0
        return tensor


def rand_contrast(tensor, is_diff_augment=False):
    if is_diff_augment:
        assert len(tensor.shape) == 4
        type_ = tensor.dtype
        device_ = tensor.device
        rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
        x_mean = tensor.mean(dim=[1, 2, 3], keepdim=True)
        return (tensor - x_mean) * (rand_tens + 0.5) + x_mean
    else:
        factor = random.uniform(0.5, 1.5)
        tensor = adjust_contrast(tensor, contrast_factor=factor)
        # dummy pixels to fool scaling and preserve range
        tensor[:, :, 0, 0] = 1.0
        tensor[:, :, -1, -1] = 0.0
        return tensor


def rand_cutout(tensor, ratio=0.5):
    assert len(tensor.shape) == 4, "For rand cutout, tensor must be 4D."
    type_ = tensor.dtype
    device_ = tensor.device
    cutout_size = int(tensor.size(-2) * ratio + 0.5), int(tensor.size(-1) * ratio + 0.5)
    grid_batch, grid_x, grid_y = torch.meshgrid(
        torch.arange(tensor.size(0), dtype=torch.long, device=device_),
        torch.arange(cutout_size[0], dtype=torch.long, device=device_),
        torch.arange(cutout_size[1], dtype=torch.long, device=device_),
    )
    size_ = [tensor.size(0), 1, 1]
    offset_x = torch.randint(
        0,
        tensor.size(-2) + (1 - cutout_size[0] % 2),
        size=size_,
        device=device_,
    )
    offset_y = torch.randint(
        0,
        tensor.size(-1) + (1 - cutout_size[1] % 2),
        size=size_,
        device=device_,
    )
    grid_x = torch.clamp(
        grid_x + offset_x - cutout_size[0] // 2, min=0, max=tensor.size(-2) - 1
    )
    grid_y = torch.clamp(
        grid_y + offset_y - cutout_size[1] // 2, min=0, max=tensor.size(-1) - 1
    )
    mask = torch.ones(
        tensor.size(0), tensor.size(2), tensor.size(3), dtype=type_, device=device_
    )
    mask[grid_batch, grid_x, grid_y] = 0
    return tensor * mask.unsqueeze(1)


def rand_translation(tensor, ratio=0.125):
    assert len(tensor.shape) == 4, "For rand translation, tensor must be 4D."
    device_ = tensor.device
    shift_x, shift_y = (
        int(tensor.size(2) * ratio + 0.5),
        int(tensor.size(3) * ratio + 0.5),
    )
    translation_x = torch.randint(
        -shift_x, shift_x + 1, size=[tensor.size(0), 1, 1], device=device_
    )
    translation_y = torch.randint(
        -shift_y, shift_y + 1, size=[tensor.size(0), 1, 1], device=device_
    )
    grid_batch, grid_x, grid_y = torch.meshgrid(
        torch.arange(tensor.size(0), dtype=torch.long, device=device_),
        torch.arange(tensor.size(2), dtype=torch.long, device=device_),
        torch.arange(tensor.size(3), dtype=torch.long, device=device_),
    )
    grid_x = torch.clamp(grid_x + translation_x + 1, 0, tensor.size(2) + 1)
    grid_y = torch.clamp(grid_y + translation_y + 1, 0, tensor.size(3) + 1)
    x_pad = F.pad(tensor, [1, 1, 1, 1, 0, 0, 0, 0])
    tensor = (
        x_pad.permute(0, 2, 3, 1)
        .contiguous()[grid_batch, grid_x, grid_y]
        .permute(0, 3, 1, 2)
    )
    return tensor


class DiffTransforms:
    def __init__(self, diff_aug_opts):
        self.do_color_jittering = diff_aug_opts.do_color_jittering
        self.do_cutout = diff_aug_opts.do_cutout
        self.do_translation = diff_aug_opts.do_translation
        self.cutout_ratio = diff_aug_opts.cutout_ratio
        self.translation_ratio = diff_aug_opts.translation_ratio

    def __call__(self, tensor):
        if self.do_color_jittering:
            tensor = rand_brightness(tensor, is_diff_augment=True)
            tensor = rand_contrast(tensor, is_diff_augment=True)
            tensor = rand_saturation(tensor, is_diff_augment=True)
        if self.do_translation:
            tensor = rand_translation(tensor, ratio=self.translation_ratio)
        if self.do_cutout:
            tensor = rand_cutout(tensor, ratio=self.cutout_ratio)
        return tensor