File size: 11,200 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
print("Imports...", end="", flush=True)

import sys
from pathlib import Path

sys.path.append(str(Path(__file__).resolve().parent.parent))

import atexit
import logging
from argparse import ArgumentParser
from copy import deepcopy

import comet_ml
import climategan
from comet_ml.api import API
from climategan.trainer import Trainer
from climategan.utils import get_comet_rest_api_key

logging.basicConfig()
logging.getLogger().setLevel(logging.ERROR)
import traceback

print("Done.")


def set_opts(opts, str_nested_key, value):
    """
    Changes an opts with nested keys:
    set_opts(addict.Dict(), "a.b.c", 2) == Dict({"a":{"b": {"c": 2}}})

    Args:
        opts (addict.Dict): opts whose values should be changed
        str_nested_key (str): nested keys joined on "."
        value (any): value to set to the nested keys of opts
    """
    keys = str_nested_key.split(".")
    o = opts
    for k in keys[:-1]:
        o = o[k]
    o[keys[-1]] = value


def set_conf(opts, conf):
    """
    Updates opts according to a test scenario's configuration dict.
    Ignores all keys starting with "__" which are used for the scenario
    but outside the opts

    Args:
        opts (addict.Dict): trainer options
        conf (dict): scenario's configuration
    """
    for k, v in conf.items():
        if k.startswith("__"):
            continue
        set_opts(opts, k, v)


class bcolors:
    HEADER = "\033[95m"
    OKBLUE = "\033[94m"
    OKGREEN = "\033[92m"
    WARNING = "\033[93m"
    FAIL = "\033[91m"
    ENDC = "\033[0m"
    BOLD = "\033[1m"
    UNDERLINE = "\033[4m"


class Colors:
    def _r(self, key, *args):
        return f"{key}{' '.join(args)}{bcolors.ENDC}"

    def ob(self, *args):
        return self._r(bcolors.OKBLUE, *args)

    def w(self, *args):
        return self._r(bcolors.WARNING, *args)

    def og(self, *args):
        return self._r(bcolors.OKGREEN, *args)

    def f(self, *args):
        return self._r(bcolors.FAIL, *args)

    def b(self, *args):
        return self._r(bcolors.BOLD, *args)

    def u(self, *args):
        return self._r(bcolors.UNDERLINE, *args)


def comet_handler(exp, api):
    def sub_handler():
        p = Colors()
        print()
        print(p.b(p.w("Deleting comet experiment")))
        api.delete_experiment(exp.get_key())

    return sub_handler


def print_start(desc):
    p = Colors()
    cdesc = p.b(p.ob(desc))
    title = "|  " + cdesc + "  |"
    line = "-" * (len(desc) + 6)
    print(f"{line}\n{title}\n{line}")


def print_end(desc=None, ok=None):
    p = Colors()
    if ok and desc is None:
        desc = "Done"
        cdesc = p.b(p.og(desc))
    elif not ok and desc is None:
        desc = "! Fail !"
        cdesc = p.b(p.f(desc))
    elif desc is not None:
        cdesc = p.b(p.og(desc))
    else:
        desc = "Unknown"
        cdesc = desc

    title = "|  " + cdesc + "  |"
    line = "-" * (len(desc) + 6)
    print(f"{line}\n{title}\n{line}\n")


def delete_on_exit(exp):
    """
    Registers a callback to delete the comet exp at program exit

    Args:
        exp (comet_ml.Experiment): The exp to delete
    """
    rest_api_key = get_comet_rest_api_key()
    api = API(api_key=rest_api_key)
    atexit.register(comet_handler(exp, api))


if __name__ == "__main__":

    # -----------------------------
    # -----  Parse Arguments  -----
    # -----------------------------
    parser = ArgumentParser()
    parser.add_argument("--no_delete", action="store_true", default=False)
    parser.add_argument("--no_end_to_end", action="store_true", default=False)
    parser.add_argument("--include", "-i", nargs="+", default=[])
    parser.add_argument("--exclude", "-e", nargs="+", default=[])
    args = parser.parse_args()

    assert not (args.include and args.exclude), "Choose 1: include XOR exclude"

    include = set(int(i) for i in args.include)
    exclude = set(int(i) for i in args.exclude)
    if include:
        print("Including exclusively tests", " ".join(args.include))
    if exclude:
        print("Excluding tests", " ".join(args.exclude))

    # --------------------------------------
    # -----  Create global experiment  -----
    # --------------------------------------
    print("Creating comet Experiment...", end="", flush=True)
    global_exp = comet_ml.Experiment(
        project_name="climategan-test", display_summary_level=0
    )
    print("Done.")

    if not args.no_delete:
        delete_on_exit(global_exp)

    # prompt util for colors
    prompt = Colors()

    # -------------------------------------
    # -----  Base Test Scenario Opts  -----
    # -------------------------------------
    print("Loading opts...", end="", flush=True)
    base_opts = climategan.utils.load_opts()
    base_opts.data.check_samples = False
    base_opts.train.fid.n_images = 5
    base_opts.comet.display_size = 5
    base_opts.tasks = ["m", "s", "d"]
    base_opts.domains = ["r", "s"]
    base_opts.data.loaders.num_workers = 4
    base_opts.data.loaders.batch_size = 2
    base_opts.data.max_samples = 9
    base_opts.train.epochs = 1
    if isinstance(base_opts.data.transforms[-1].new_size, int):
        base_opts.data.transforms[-1].new_size = 256
    else:
        base_opts.data.transforms[-1].new_size.default = 256
    print("Done.")

    # --------------------------------------
    # -----  Configure Test Scenarios  -----
    # --------------------------------------

    # override any nested key in opts
    # create scenario-specific variables with __key
    # ALWAYS specify a __doc key to describe your scenario
    test_scenarios = [
        {"__use_comet": False, "__doc": "MSD no exp", "__verbose": 1},  # 0
        {"__doc": "MSD with exp"},  # 1
        {
            "__doc": "MSD no exp upsample_featuremaps",  # 2
            "__use_comet": False,
            "gen.d.upsample_featuremaps": True,
            "gen.s.upsample_featuremaps": True,
        },
        {"tasks": ["p"], "domains": ["rf"], "__doc": "Painter"},  # 3
        {
            "__doc": "M no exp low level feats",  # 4
            "__use_comet": False,
            "gen.m.use_low_level_feats": True,
            "gen.m.use_dada": False,
            "tasks": ["m"],
        },
        {
            "__doc": "MSD no exp deeplabv2",  # 5
            "__use_comet": False,
            "gen.encoder.architecture": "deeplabv2",
            "gen.s.architecture": "deeplabv2",
        },
        {
            "__doc": "MSDP no End-to-end",  # 6
            "domains": ["rf", "r", "s"],
            "tasks": ["m", "s", "d", "p"],
        },
        {
            "__doc": "MSDP inference only no exp",  # 7
            "__inference": True,
            "__use_comet": False,
            "domains": ["rf", "r", "s"],
            "tasks": ["m", "s", "d", "p"],
        },
        {
            "__doc": "MSDP with End-to-end",  # 8
            "__pl4m": True,
            "domains": ["rf", "r", "s"],
            "tasks": ["m", "s", "d", "p"],
        },
        {
            "__doc": "Kitti pretrain",  # 9
            "train.epochs": 2,
            "train.kitti.pretrain": True,
            "train.kitti.epochs": 1,
            "domains": ["kitti", "r", "s"],
            "train.kitti.batch_size": 2,
        },
        {"__doc": "Depth Dada archi", "gen.d.architecture": "dada"},  # 10
        {
            "__doc": "Depth Base archi",
            "gen.d.architecture": "base",
            "gen.m.use_dada": False,
            "gen.s.use_dada": False,
        },  # 11
        {
            "__doc": "Depth Base Classification",  # 12
            "gen.d.architecture": "base",
            "gen.d.classify.enable": True,
            "gen.m.use_dada": False,
            "gen.s.use_dada": False,
        },
        {
            "__doc": "MSD Resnet V3+ backbone",
            "gen.deeplabv3.backbone": "resnet",
        },  # 13
        {
            "__use_comet": False,
            "__doc": "MSD SPADE 12 (without x)",
            "__verbose": 1,
            "gen.m.use_spade": True,
            "gen.m.spade.cond_nc": 12,
        },  # 14
        {
            "__use_comet": False,
            "__doc": "MSD SPADE 15 (with x)",
            "__verbose": 1,
            "gen.m.use_spade": True,
            "gen.m.spade.cond_nc": 15,
        },  # 15
        {
            "__use_comet": False,
            "__doc": "Painter With Diff Augment",
            "__verbose": 1,
            "domains": ["rf"],
            "tasks": ["p"],
            "gen.p.diff_aug.use": True,
        },  # 15
        {
            "__use_comet": False,
            "__doc": "MSD DADA_s",
            "__verbose": 1,
            "gen.s.use_dada": True,
            "gen.m.use_dada": False,
        },  # 16
        {
            "__use_comet": False,
            "__doc": "MSD DADA_ms",
            "__verbose": 1,
            "gen.s.use_dada": True,
            "gen.m.use_dada": True,
        },  # 17
    ]

    n_confs = len(test_scenarios)

    fails = []
    successes = []

    # --------------------------------
    # -----  Run Test Scenarios  -----
    # --------------------------------

    for test_idx, conf in enumerate(test_scenarios):
        if test_idx in exclude or (include and test_idx not in include):
            reason = (
                "because it is in exclude"
                if test_idx in exclude
                else "because it is not in include"
            )
            print("Ignoring test", test_idx, reason)
            continue

        # copy base scenario opts
        test_opts = deepcopy(base_opts)
        # update with scenario configuration
        set_conf(test_opts, conf)

        # print scenario description
        print_start(
            f"[{test_idx}/{n_confs - 1}] "
            + conf.get("__doc", "WARNING: no __doc for test scenario")
        )
        print()

        comet = conf.get("__use_comet", True)
        pl4m = conf.get("__pl4m", False)
        inference = conf.get("__inference", False)
        verbose = conf.get("__verbose", 0)

        # set (or not) experiment
        test_exp = None
        if comet:
            test_exp = global_exp

        try:
            # create trainer
            trainer = Trainer(
                opts=test_opts,
                verbose=verbose,
                comet_exp=test_exp,
            )
            trainer.functional_test_mode()

            # set (or not) painter loss for masker (= end-to-end)
            if pl4m:
                trainer.use_pl4m = True

            # test training procedure
            trainer.setup(inference=inference)
            if not inference:
                trainer.train()

            successes.append(test_idx)
            ok = True
        except Exception as e:
            print(e)
            print(traceback.format_exc())
            fails.append(test_idx)
            ok = False
        finally:
            print_end(ok=ok)

    print_end(desc="     -----   Summary   -----     ")
    if len(fails) == 0:
        print("•• All scenarios were successful")
    else:
        print(f"•• {len(successes)}/{len(test_scenarios)} successful tests")
        print(f"•• Failed test indices: {', '.join(map(str, fails))}")