Spaces:
Runtime error
Runtime error
File size: 8,179 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from climategan.blocks import (
BaseDecoder,
Conv2dBlock,
InterpolateNearest2d,
SPADEResnetBlock,
)
def create_mask_decoder(opts, no_init=False, verbose=0):
if opts.gen.m.use_spade:
if verbose > 0:
print(" - Add Spade Mask Decoder")
assert "d" in opts.tasks or "s" in opts.tasks
return MaskSpadeDecoder(opts)
else:
if verbose > 0:
print(" - Add Base Mask Decoder")
return MaskBaseDecoder(opts)
class MaskBaseDecoder(BaseDecoder):
def __init__(self, opts):
low_level_feats_dim = -1
use_v3 = opts.gen.encoder.architecture == "deeplabv3"
use_mobile_net = opts.gen.deeplabv3.backbone == "mobilenet"
use_low = opts.gen.m.use_low_level_feats
use_dada = ("d" in opts.tasks) and opts.gen.m.use_dada
if use_v3 and use_mobile_net:
input_dim = 320
if use_low:
low_level_feats_dim = 24
elif use_v3:
input_dim = 2048
if use_low:
low_level_feats_dim = 256
else:
input_dim = 2048
super().__init__(
n_upsample=opts.gen.m.n_upsample,
n_res=opts.gen.m.n_res,
input_dim=input_dim,
proj_dim=opts.gen.m.proj_dim,
output_dim=opts.gen.m.output_dim,
norm=opts.gen.m.norm,
activ=opts.gen.m.activ,
pad_type=opts.gen.m.pad_type,
output_activ="none",
low_level_feats_dim=low_level_feats_dim,
use_dada=use_dada,
)
class MaskSpadeDecoder(nn.Module):
def __init__(self, opts):
"""Create a SPADE-based decoder, which forwards z and the conditioning
tensors seg (in the original paper, conditioning is on a semantic map only).
All along, z is conditioned on seg. First 3 SpadeResblocks (SRB) do not shrink
the channel dimension, and an upsampling is applied after each. Therefore
2 upsamplings at this point. Then, for each remaining upsamplings
(w.r.t. spade_n_up), the SRB shrinks channels by 2. Before final conv to get 3
channels, the number of channels is therefore:
final_nc = channels(z) * 2 ** (spade_n_up - 2)
Args:
latent_dim (tuple): z's shape (only the number of channels matters)
cond_nc (int): conditioning tensor's expected number of channels
spade_n_up (int): Number of total upsamplings from z
spade_use_spectral_norm (bool): use spectral normalization?
spade_param_free_norm (str): norm to use before SPADE de-normalization
spade_kernel_size (int): SPADE conv layers' kernel size
Returns:
[type]: [description]
"""
super().__init__()
self.opts = opts
latent_dim = opts.gen.m.spade.latent_dim
cond_nc = opts.gen.m.spade.cond_nc
spade_use_spectral_norm = opts.gen.m.spade.spade_use_spectral_norm
spade_param_free_norm = opts.gen.m.spade.spade_param_free_norm
if self.opts.gen.m.spade.activations.all_lrelu:
spade_activation = "lrelu"
else:
spade_activation = None
spade_kernel_size = 3
self.num_layers = opts.gen.m.spade.num_layers
self.z_nc = latent_dim
if (
opts.gen.encoder.architecture == "deeplabv3"
and opts.gen.deeplabv3.backbone == "mobilenet"
):
self.input_dim = [320, 24]
self.low_level_conv = Conv2dBlock(
self.input_dim[1],
self.input_dim[0],
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
self.merge_feats_conv = Conv2dBlock(
self.input_dim[0] * 2,
self.z_nc,
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
elif (
opts.gen.encoder.architecture == "deeplabv3"
and opts.gen.deeplabv3.backbone == "resnet"
):
self.input_dim = [2048, 256]
if self.opts.gen.m.use_proj:
proj_dim = self.opts.gen.m.proj_dim
self.low_level_conv = Conv2dBlock(
self.input_dim[1],
proj_dim,
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
self.high_level_conv = Conv2dBlock(
self.input_dim[0],
proj_dim,
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
self.merge_feats_conv = Conv2dBlock(
proj_dim * 2,
self.z_nc,
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
else:
self.low_level_conv = Conv2dBlock(
self.input_dim[1],
self.input_dim[0],
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
self.merge_feats_conv = Conv2dBlock(
self.input_dim[0] * 2,
self.z_nc,
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
elif opts.gen.encoder.architecture == "deeplabv2":
self.input_dim = 2048
self.fc_conv = Conv2dBlock(
self.input_dim,
self.z_nc,
3,
padding=1,
activation="lrelu",
pad_type="reflect",
norm="spectral_batch",
)
else:
raise ValueError("Unknown encoder type")
self.spade_blocks = []
for i in range(self.num_layers):
self.spade_blocks.append(
SPADEResnetBlock(
int(self.z_nc / (2**i)),
int(self.z_nc / (2 ** (i + 1))),
cond_nc,
spade_use_spectral_norm,
spade_param_free_norm,
spade_kernel_size,
spade_activation,
)
)
self.spade_blocks = nn.Sequential(*self.spade_blocks)
self.final_nc = int(self.z_nc / (2**self.num_layers))
self.mask_conv = Conv2dBlock(
self.final_nc,
1,
3,
padding=1,
activation="none",
pad_type="reflect",
norm="spectral",
)
self.upsample = InterpolateNearest2d(scale_factor=2)
def forward(self, z, cond, z_depth=None):
if isinstance(z, (list, tuple)):
z_h, z_l = z
if self.opts.gen.m.use_proj:
z_l = self.low_level_conv(z_l)
z_l = F.interpolate(z_l, size=z_h.shape[-2:], mode="bilinear")
z_h = self.high_level_conv(z_h)
else:
z_l = self.low_level_conv(z_l)
z_l = F.interpolate(z_l, size=z_h.shape[-2:], mode="bilinear")
z = torch.cat([z_h, z_l], axis=1)
y = self.merge_feats_conv(z)
else:
y = self.fc_conv(z)
for i in range(self.num_layers):
y = self.spade_blocks[i](y, cond)
y = self.upsample(y)
y = self.mask_conv(y)
return y
def __str__(self):
return "MaskerSpadeDecoder"
|