File size: 10,786 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
This script computes the median difference and confidence intervals of all techniques from the ablation study for
improving the masker evaluation metrics. The differences in the metrics are computed
for all images of paired models, that is those which only differ in the inclusion or
not of the given technique. Then, statistical inference is performed through the
percentile bootstrap to obtain robust estimates of the differences in the metrics and
confidence intervals. The script plots the summary for all techniques.
"""
print("Imports...", end="")
from argparse import ArgumentParser
import yaml
import numpy as np
import pandas as pd
import seaborn as sns
from scipy.special import comb
from scipy.stats import trim_mean
from tqdm import tqdm
from collections import OrderedDict
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.transforms as transforms


# -----------------------
# -----  Constants  -----
# -----------------------

dict_metrics = {
    "names": {
        "tpr": "TPR, Recall, Sensitivity",
        "tnr": "TNR, Specificity, Selectivity",
        "fpr": "FPR",
        "fpt": "False positives relative to image size",
        "fnr": "FNR, Miss rate",
        "fnt": "False negatives relative to image size",
        "mpr": "May positive rate (MPR)",
        "mnr": "May negative rate (MNR)",
        "accuracy": "Accuracy (ignoring may)",
        "error": "Error",
        "f05": "F05 score",
        "precision": "Precision",
        "edge_coherence": "Edge coherence",
        "accuracy_must_may": "Accuracy (ignoring cannot)",
    },
    "key_metrics": ["error", "f05", "edge_coherence"],
}

dict_techniques = OrderedDict(
    [
        ("pseudo", "Pseudo labels"),
        ("depth", "Depth (D)"),
        ("seg", "Seg. (S)"),
        ("spade", "SPADE"),
        ("dada_seg", "DADA (S)"),
        ("dada_masker", "DADA (M)"),
    ]
)

# Model features
model_feats = [
    "masker",
    "seg",
    "depth",
    "dada_seg",
    "dada_masker",
    "spade",
    "pseudo",
    "ground",
    "instagan",
]

# Colors
crest = sns.color_palette("crest", as_cmap=False, n_colors=7)
palette_metrics = [crest[0], crest[3], crest[6]]
sns.palplot(palette_metrics)

# Markers
dict_markers = {"error": "o", "f05": "s", "edge_coherence": "^"}


def parsed_args():
    """
    Parse and returns command-line args

    Returns:
        argparse.Namespace: the parsed arguments
    """
    parser = ArgumentParser()
    parser.add_argument(
        "--input_csv",
        default="ablations_metrics_20210311.csv",
        type=str,
        help="CSV containing the results of the ablation study",
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        help="Output directory",
    )
    parser.add_argument(
        "--dpi",
        default=200,
        type=int,
        help="DPI for the output images",
    )
    parser.add_argument(
        "--n_bs",
        default=1e6,
        type=int,
        help="Number of bootrstrap samples",
    )
    parser.add_argument(
        "--alpha",
        default=0.99,
        type=float,
        help="Confidence level",
    )
    parser.add_argument(
        "--bs_seed",
        default=17,
        type=int,
        help="Bootstrap random seed, for reproducibility",
    )

    return parser.parse_args()


def trim_mean_wrapper(a):
    return trim_mean(a, proportiontocut=0.2)


def find_model_pairs(technique, model_feats):
    model_pairs = []
    for mi in df.loc[df[technique]].model_feats.unique():
        for mj in df.model_feats.unique():
            if mj == mi:
                continue

            if df.loc[df.model_feats == mj, technique].unique()[0]:
                continue

            is_pair = True
            for f in model_feats:
                if f == technique:
                    continue
                elif (
                    df.loc[df.model_feats == mj, f].unique()[0]
                    != df.loc[df.model_feats == mi, f].unique()[0]
                ):
                    is_pair = False
                    break
                else:
                    pass
            if is_pair:
                model_pairs.append((mi, mj))
                break
    return model_pairs


if __name__ == "__main__":
    # -----------------------------
    # -----  Parse arguments  -----
    # -----------------------------
    args = parsed_args()
    print("Args:\n" + "\n".join([f"    {k:20}: {v}" for k, v in vars(args).items()]))

    # Determine output dir
    if args.output_dir is None:
        output_dir = Path(os.environ["SLURM_TMPDIR"])
    else:
        output_dir = Path(args.output_dir)
    if not output_dir.exists():
        output_dir.mkdir(parents=True, exist_ok=False)

    # Store args
    output_yml = output_dir / "bootstrap_summary.yml"
    with open(output_yml, "w") as f:
        yaml.dump(vars(args), f)

    # Read CSV
    df = pd.read_csv(args.input_csv, index_col="model_img_idx")

    # Build data set
    dfbs = pd.DataFrame(columns=["diff", "technique", "metric"])
    for technique in model_feats:

        # Get pairs
        model_pairs = find_model_pairs(technique, model_feats)

        # Compute differences
        for m_with, m_without in model_pairs:
            df_with = df.loc[df.model_feats == m_with]
            df_without = df.loc[df.model_feats == m_without]
            for metric in dict_metrics["key_metrics"]:
                diff = (
                    df_with.sort_values(by="img_idx")[metric].values
                    - df_without.sort_values(by="img_idx")[metric].values
                )
                dfm = pd.DataFrame.from_dict(
                    {"metric": metric, "technique": technique, "diff": diff}
                )
                dfbs = dfbs.append(dfm, ignore_index=True)

    ### Plot

    # Set up plot
    sns.reset_orig()
    sns.set(style="whitegrid")
    plt.rcParams.update({"font.family": "serif"})
    plt.rcParams.update(
        {
            "font.serif": [
                "Computer Modern Roman",
                "Times New Roman",
                "Utopia",
                "New Century Schoolbook",
                "Century Schoolbook L",
                "ITC Bookman",
                "Bookman",
                "Times",
                "Palatino",
                "Charter",
                "serif" "Bitstream Vera Serif",
                "DejaVu Serif",
            ]
        }
    )

    fig, axes = plt.subplots(
        nrows=1, ncols=3, sharey=True, dpi=args.dpi, figsize=(9, 3)
    )

    metrics = ["error", "f05", "edge_coherence"]
    dict_ci = {m: {} for m in metrics}

    for idx, metric in enumerate(dict_metrics["key_metrics"]):

        ax = sns.pointplot(
            ax=axes[idx],
            data=dfbs.loc[dfbs.metric.isin(["error", "f05", "edge_coherence"])],
            order=dict_techniques.keys(),
            x="diff",
            y="technique",
            hue="metric",
            hue_order=[metric],
            markers=dict_markers[metric],
            palette=[palette_metrics[idx]],
            errwidth=1.5,
            scale=0.6,
            join=False,
            estimator=trim_mean_wrapper,
            ci=int(args.alpha * 100),
            n_boot=args.n_bs,
            seed=args.bs_seed,
        )

        # Retrieve confidence intervals and update results dictionary
        for line, technique in zip(ax.lines, dict_techniques.keys()):
            dict_ci[metric].update(
                {
                    technique: {
                        "20_trimmed_mean": float(
                            trim_mean_wrapper(
                                dfbs.loc[
                                    (dfbs.technique == technique)
                                    & (dfbs.metric == metrics[idx]),
                                    "diff",
                                ].values
                            )
                        ),
                        "ci_left": float(line.get_xdata()[0]),
                        "ci_right": float(line.get_xdata()[1]),
                    }
                }
            )

        leg_handles, leg_labels = ax.get_legend_handles_labels()

        # Change spines
        sns.despine(left=True, bottom=True)

        # Set Y-label
        ax.set_ylabel(None)

        # Y-tick labels
        ax.set_yticklabels(list(dict_techniques.values()), fontsize="medium")

        # Set X-label
        ax.set_xlabel(None)

        # X-ticks
        xticks = ax.get_xticks()
        xticklabels = xticks
        ax.set_xticks(xticks)
        ax.set_xticklabels(xticklabels, fontsize="small")

        # Y-lim
        display2data = ax.transData.inverted()
        ax2display = ax.transAxes
        _, y_bottom = display2data.transform(ax.transAxes.transform((0.0, 0.02)))
        _, y_top = display2data.transform(ax.transAxes.transform((0.0, 0.98)))
        ax.set_ylim(bottom=y_bottom, top=y_top)

        # Draw line at H0
        y = np.arange(ax.get_ylim()[1], ax.get_ylim()[0], 0.1)
        x = 0.0 * np.ones(y.shape[0])
        ax.plot(x, y, linestyle=":", linewidth=1.5, color="black")

        # Draw gray area
        xlim = ax.get_xlim()
        ylim = ax.get_ylim()
        if metric == "error":
            x0 = xlim[0]
            width = np.abs(x0)
        else:
            x0 = 0.0
            width = np.abs(xlim[1])
        trans = transforms.blended_transform_factory(ax.transData, ax.transAxes)
        rect = mpatches.Rectangle(
            xy=(x0, 0.0),
            width=width,
            height=1,
            transform=trans,
            linewidth=0.0,
            edgecolor="none",
            facecolor="gray",
            alpha=0.05,
        )
        ax.add_patch(rect)

        # Legend
        leg_handles, leg_labels = ax.get_legend_handles_labels()
        leg_labels = [dict_metrics["names"][metric] for metric in leg_labels]
        leg = ax.legend(
            handles=leg_handles,
            labels=leg_labels,
            loc="center",
            title="",
            bbox_to_anchor=(-0.2, 1.05, 1.0, 0.0),
            framealpha=1.0,
            frameon=False,
            handletextpad=-0.2,
        )

    # Set X-label (title)                                                                                                     │
    fig.suptitle(
        "20 % trimmed mean difference and bootstrapped confidence intervals",
        y=0.0,
        fontsize="medium",
    )

    # Save figure
    output_fig = output_dir / "bootstrap_summary.png"
    fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")

    # Store results
    output_results = output_dir / "bootstrap_summary_results.yml"
    with open(output_results, "w") as f:
        yaml.dump(dict_ci, f)