Spaces:
Runtime error
Runtime error
File size: 5,457 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
"""
This script plots the result of the human evaluation on Amazon Mechanical Turk, where
human participants chose between an image from ClimateGAN or from a different method.
"""
print("Imports...", end="")
from argparse import ArgumentParser
import os
import yaml
import numpy as np
import pandas as pd
import seaborn as sns
from pathlib import Path
import matplotlib.pyplot as plt
# -----------------------
# ----- Constants -----
# -----------------------
comparables_dict = {
"munit_flooded": "MUNIT",
"cyclegan": "CycleGAN",
"instagan": "InstaGAN",
"instagan_copypaste": "Mask-InstaGAN",
"painted_ground": "Painted ground",
}
# Colors
palette_colorblind = sns.color_palette("colorblind")
color_climategan = palette_colorblind[9]
palette_colorblind = sns.color_palette("colorblind")
color_munit = palette_colorblind[1]
color_cyclegan = palette_colorblind[2]
color_instagan = palette_colorblind[3]
color_maskinstagan = palette_colorblind[6]
color_paintedground = palette_colorblind[8]
palette_comparables = [
color_munit,
color_cyclegan,
color_instagan,
color_maskinstagan,
color_paintedground,
]
palette_comparables_light = [
sns.light_palette(color, n_colors=3)[1] for color in palette_comparables
]
def parsed_args():
"""
Parse and returns command-line args
Returns:
argparse.Namespace: the parsed arguments
"""
parser = ArgumentParser()
parser.add_argument(
"--input_csv",
default="amt_omni-vs-other.csv",
type=str,
help="CSV containing the results of the human evaluation, pre-processed",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="Output directory",
)
parser.add_argument(
"--dpi",
default=200,
type=int,
help="DPI for the output images",
)
parser.add_argument(
"--n_bs",
default=1e6,
type=int,
help="Number of bootrstrap samples",
)
parser.add_argument(
"--bs_seed",
default=17,
type=int,
help="Bootstrap random seed, for reproducibility",
)
return parser.parse_args()
if __name__ == "__main__":
# -----------------------------
# ----- Parse arguments -----
# -----------------------------
args = parsed_args()
print("Args:\n" + "\n".join([f" {k:20}: {v}" for k, v in vars(args).items()]))
# Determine output dir
if args.output_dir is None:
output_dir = Path(os.environ["SLURM_TMPDIR"])
else:
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=False)
# Store args
output_yml = output_dir / "args_human_evaluation.yml"
with open(output_yml, "w") as f:
yaml.dump(vars(args), f)
# Read CSV
df = pd.read_csv(args.input_csv)
# Sort Y labels
comparables = df.comparable.unique()
is_climategan_sum = [
df.loc[df.comparable == c, "climategan"].sum() for c in comparables
]
comparables = comparables[np.argsort(is_climategan_sum)[::-1]]
# Plot setup
sns.set(style="whitegrid")
plt.rcParams.update({"font.family": "serif"})
plt.rcParams.update(
{
"font.serif": [
"Computer Modern Roman",
"Times New Roman",
"Utopia",
"New Century Schoolbook",
"Century Schoolbook L",
"ITC Bookman",
"Bookman",
"Times",
"Palatino",
"Charter",
"serif" "Bitstream Vera Serif",
"DejaVu Serif",
]
}
)
fontsize = "medium"
# Initialize the matplotlib figure
fig, ax = plt.subplots(figsize=(10.5, 3), dpi=args.dpi)
# Plot the total (right)
sns.barplot(
data=df.loc[df.is_valid],
x="is_valid",
y="comparable",
order=comparables,
orient="h",
label="comparable",
palette=palette_comparables_light,
ci=None,
)
# Plot the left
sns.barplot(
data=df.loc[df.is_valid],
x="climategan",
y="comparable",
order=comparables,
orient="h",
label="climategan",
color=color_climategan,
ci=99,
n_boot=args.n_bs,
seed=args.bs_seed,
errcolor="black",
errwidth=1.5,
capsize=0.1,
)
# Draw line at 0.5
y = np.arange(ax.get_ylim()[1] + 0.1, ax.get_ylim()[0], 0.1)
x = 0.5 * np.ones(y.shape[0])
ax.plot(x, y, linestyle=":", linewidth=1.5, color="black")
# Change Y-Tick labels
yticklabels = [comparables_dict[ytick.get_text()] for ytick in ax.get_yticklabels()]
yticklabels_text = ax.set_yticklabels(
yticklabels, fontsize=fontsize, horizontalalignment="right", x=0.96
)
for ytl in yticklabels_text:
ax.add_artist(ytl)
# Remove Y-label
ax.set_ylabel(ylabel="")
# Change X-Tick labels
xlim = [0.0, 1.1]
xticks = np.arange(xlim[0], xlim[1], 0.1)
ax.set(xticks=xticks)
plt.setp(ax.get_xticklabels(), fontsize=fontsize)
# Set X-label
ax.set_xlabel(None)
# Change spines
sns.despine(left=True, bottom=True)
# Save figure
output_fig = output_dir / "human_evaluation_rate_climategan.png"
fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")
|