File size: 5,376 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
This scripts plots images from the Masker test set overlaid with their labels.
"""
print("Imports...", end="")
from argparse import ArgumentParser
import os
import yaml
import numpy as np
import pandas as pd
import seaborn as sns
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

import sys

sys.path.append("../")

from eval_masker import crop_and_resize


# -----------------------
# -----  Constants  -----
# -----------------------

# Colors
colorblind_palette = sns.color_palette("colorblind")
color_cannot = colorblind_palette[1]
color_must = colorblind_palette[2]
color_may = colorblind_palette[7]
color_pred = colorblind_palette[4]

icefire = sns.color_palette("icefire", as_cmap=False, n_colors=5)
color_tp = icefire[0]
color_tn = icefire[1]
color_fp = icefire[4]
color_fn = icefire[3]


def parsed_args():
    """
    Parse and returns command-line args

    Returns:
        argparse.Namespace: the parsed arguments
    """
    parser = ArgumentParser()
    parser.add_argument(
        "--input_csv",
        default="ablations_metrics_20210311.csv",
        type=str,
        help="CSV containing the results of the ablation study",
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        help="Output directory",
    )
    parser.add_argument(
        "--masker_test_set_dir",
        default=None,
        type=str,
        help="Directory containing the test images",
    )
    parser.add_argument(
        "--images",
        nargs="+",
        help="List of image file names to plot",
        default=[],
        type=str,
    )
    parser.add_argument(
        "--dpi",
        default=200,
        type=int,
        help="DPI for the output images",
    )
    parser.add_argument(
        "--alpha",
        default=0.5,
        type=float,
        help="Transparency of labels shade",
    )

    return parser.parse_args()


def map_color(arr, input_color, output_color, rtol=1e-09):
    """
    Maps one color to another
    """
    input_color_arr = np.tile(input_color, (arr.shape[:2] + (1,)))
    output = arr.copy()
    output[np.all(np.isclose(arr, input_color_arr, rtol=rtol), axis=2)] = output_color
    return output


if __name__ == "__main__":
    # -----------------------------
    # -----  Parse arguments  -----
    # -----------------------------
    args = parsed_args()
    print("Args:\n" + "\n".join([f"    {k:20}: {v}" for k, v in vars(args).items()]))

    # Determine output dir
    if args.output_dir is None:
        output_dir = Path(os.environ["SLURM_TMPDIR"])
    else:
        output_dir = Path(args.output_dir)
    if not output_dir.exists():
        output_dir.mkdir(parents=True, exist_ok=False)

    # Store args
    output_yml = output_dir / "labels.yml"
    with open(output_yml, "w") as f:
        yaml.dump(vars(args), f)

    # Data dirs
    imgs_orig_path = Path(args.masker_test_set_dir) / "imgs"
    labels_path = Path(args.masker_test_set_dir) / "labels"

    # Read CSV
    df = pd.read_csv(args.input_csv, index_col="model_img_idx")

    # Set up plot
    sns.reset_orig()
    sns.set(style="whitegrid")
    plt.rcParams.update({"font.family": "serif"})
    plt.rcParams.update(
        {
            "font.serif": [
                "Computer Modern Roman",
                "Times New Roman",
                "Utopia",
                "New Century Schoolbook",
                "Century Schoolbook L",
                "ITC Bookman",
                "Bookman",
                "Times",
                "Palatino",
                "Charter",
                "serif" "Bitstream Vera Serif",
                "DejaVu Serif",
            ]
        }
    )

    fig, axes = plt.subplots(
        nrows=1, ncols=len(args.images), dpi=args.dpi, figsize=(len(args.images) * 5, 5)
    )

    for idx, img_filename in enumerate(args.images):

        # Read images
        img_path = imgs_orig_path / img_filename
        label_path = labels_path / "{}_labeled.png".format(Path(img_filename).stem)
        img, label = crop_and_resize(img_path, label_path)

        # Map label colors
        label_colmap = label.astype(float)
        label_colmap = map_color(label_colmap, (255, 0, 0), color_cannot)
        label_colmap = map_color(label_colmap, (0, 0, 255), color_must)
        label_colmap = map_color(label_colmap, (0, 0, 0), color_may)

        ax = axes[idx]
        ax.imshow(img)
        ax.imshow(label_colmap, alpha=args.alpha)
        ax.axis("off")

    # Legend
    handles = []
    lw = 1.0
    handles.append(
        mpatches.Patch(
            facecolor=color_must, label="must", linewidth=lw, alpha=args.alpha
        )
    )
    handles.append(
        mpatches.Patch(facecolor=color_may, label="may", linewidth=lw, alpha=args.alpha)
    )
    handles.append(
        mpatches.Patch(
            facecolor=color_cannot, label="cannot", linewidth=lw, alpha=args.alpha
        )
    )
    labels = ["Must-be-flooded", "May-be-flooded", "Cannot-be-flooded"]
    fig.legend(
        handles=handles,
        labels=labels,
        loc="upper center",
        bbox_to_anchor=(0.0, 0.85, 1.0, 0.075),
        ncol=len(args.images),
        fontsize="medium",
        frameon=False,
    )

    # Save figure
    output_fig = output_dir / "labels.png"
    fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")