Spaces:
Runtime error
Runtime error
File size: 5,376 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
"""
This scripts plots images from the Masker test set overlaid with their labels.
"""
print("Imports...", end="")
from argparse import ArgumentParser
import os
import yaml
import numpy as np
import pandas as pd
import seaborn as sns
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import sys
sys.path.append("../")
from eval_masker import crop_and_resize
# -----------------------
# ----- Constants -----
# -----------------------
# Colors
colorblind_palette = sns.color_palette("colorblind")
color_cannot = colorblind_palette[1]
color_must = colorblind_palette[2]
color_may = colorblind_palette[7]
color_pred = colorblind_palette[4]
icefire = sns.color_palette("icefire", as_cmap=False, n_colors=5)
color_tp = icefire[0]
color_tn = icefire[1]
color_fp = icefire[4]
color_fn = icefire[3]
def parsed_args():
"""
Parse and returns command-line args
Returns:
argparse.Namespace: the parsed arguments
"""
parser = ArgumentParser()
parser.add_argument(
"--input_csv",
default="ablations_metrics_20210311.csv",
type=str,
help="CSV containing the results of the ablation study",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="Output directory",
)
parser.add_argument(
"--masker_test_set_dir",
default=None,
type=str,
help="Directory containing the test images",
)
parser.add_argument(
"--images",
nargs="+",
help="List of image file names to plot",
default=[],
type=str,
)
parser.add_argument(
"--dpi",
default=200,
type=int,
help="DPI for the output images",
)
parser.add_argument(
"--alpha",
default=0.5,
type=float,
help="Transparency of labels shade",
)
return parser.parse_args()
def map_color(arr, input_color, output_color, rtol=1e-09):
"""
Maps one color to another
"""
input_color_arr = np.tile(input_color, (arr.shape[:2] + (1,)))
output = arr.copy()
output[np.all(np.isclose(arr, input_color_arr, rtol=rtol), axis=2)] = output_color
return output
if __name__ == "__main__":
# -----------------------------
# ----- Parse arguments -----
# -----------------------------
args = parsed_args()
print("Args:\n" + "\n".join([f" {k:20}: {v}" for k, v in vars(args).items()]))
# Determine output dir
if args.output_dir is None:
output_dir = Path(os.environ["SLURM_TMPDIR"])
else:
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=False)
# Store args
output_yml = output_dir / "labels.yml"
with open(output_yml, "w") as f:
yaml.dump(vars(args), f)
# Data dirs
imgs_orig_path = Path(args.masker_test_set_dir) / "imgs"
labels_path = Path(args.masker_test_set_dir) / "labels"
# Read CSV
df = pd.read_csv(args.input_csv, index_col="model_img_idx")
# Set up plot
sns.reset_orig()
sns.set(style="whitegrid")
plt.rcParams.update({"font.family": "serif"})
plt.rcParams.update(
{
"font.serif": [
"Computer Modern Roman",
"Times New Roman",
"Utopia",
"New Century Schoolbook",
"Century Schoolbook L",
"ITC Bookman",
"Bookman",
"Times",
"Palatino",
"Charter",
"serif" "Bitstream Vera Serif",
"DejaVu Serif",
]
}
)
fig, axes = plt.subplots(
nrows=1, ncols=len(args.images), dpi=args.dpi, figsize=(len(args.images) * 5, 5)
)
for idx, img_filename in enumerate(args.images):
# Read images
img_path = imgs_orig_path / img_filename
label_path = labels_path / "{}_labeled.png".format(Path(img_filename).stem)
img, label = crop_and_resize(img_path, label_path)
# Map label colors
label_colmap = label.astype(float)
label_colmap = map_color(label_colmap, (255, 0, 0), color_cannot)
label_colmap = map_color(label_colmap, (0, 0, 255), color_must)
label_colmap = map_color(label_colmap, (0, 0, 0), color_may)
ax = axes[idx]
ax.imshow(img)
ax.imshow(label_colmap, alpha=args.alpha)
ax.axis("off")
# Legend
handles = []
lw = 1.0
handles.append(
mpatches.Patch(
facecolor=color_must, label="must", linewidth=lw, alpha=args.alpha
)
)
handles.append(
mpatches.Patch(facecolor=color_may, label="may", linewidth=lw, alpha=args.alpha)
)
handles.append(
mpatches.Patch(
facecolor=color_cannot, label="cannot", linewidth=lw, alpha=args.alpha
)
)
labels = ["Must-be-flooded", "May-be-flooded", "Cannot-be-flooded"]
fig.legend(
handles=handles,
labels=labels,
loc="upper center",
bbox_to_anchor=(0.0, 0.85, 1.0, 0.075),
ncol=len(args.images),
fontsize="medium",
frameon=False,
)
# Save figure
output_fig = output_dir / "labels.png"
fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")
|