File size: 4,401 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch.nn as nn
from climategan.blocks import ResBlocks

affine_par = True


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
        super(Bottleneck, self).__init__()
        # change
        self.conv1 = nn.Conv2d(
            inplanes, planes, kernel_size=1, stride=stride, bias=False
        )
        self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
        for i in self.bn1.parameters():
            i.requires_grad = False
        padding = dilation
        # change
        self.conv2 = nn.Conv2d(
            planes,
            planes,
            kernel_size=3,
            stride=1,
            padding=padding,
            bias=False,
            dilation=dilation,
        )
        self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
        for i in self.bn2.parameters():
            i.requires_grad = False
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
        for i in self.bn3.parameters():
            i.requires_grad = False
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)

        return out


class ResNetMulti(nn.Module):
    def __init__(
        self,
        layers,
        n_res=4,
        res_norm="instance",
        activ="lrelu",
        pad_type="reflect",
    ):
        self.inplanes = 64
        block = Bottleneck
        super(ResNetMulti, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
        for i in self.bn1.parameters():
            i.requires_grad = False
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(
            kernel_size=3, stride=2, padding=0, ceil_mode=True
        )  # changed padding from 1 to 0
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                m.weight.data.normal_(0, 0.01)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        self.layer_res = ResBlocks(
            n_res, 2048, norm=res_norm, activation=activ, pad_type=pad_type
        )

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
        downsample = None
        if (
            stride != 1
            or self.inplanes != planes * block.expansion
            or dilation == 2
            or dilation == 4
        ):
            downsample = nn.Sequential(
                nn.Conv2d(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                ),
                nn.BatchNorm2d(planes * block.expansion, affine=affine_par),
            )
        for i in downsample._modules["1"].parameters():
            i.requires_grad = False
        layers = []
        layers.append(
            block(
                self.inplanes, planes, stride, dilation=dilation, downsample=downsample
            )
        )
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilation))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.layer_res(x)
        return x