Spaces:
Runtime error
Runtime error
File size: 71,254 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 |
"""
Main component: the trainer handles everything:
* initializations
* training
* saving
"""
import inspect
import warnings
from copy import deepcopy
from pathlib import Path
from time import time
import numpy as np
from comet_ml import ExistingExperiment, Experiment
warnings.simplefilter("ignore", UserWarning)
import torch
import torch.nn as nn
from addict import Dict
from torch import autograd, sigmoid, softmax
from torch.cuda.amp import GradScaler, autocast
from tqdm import tqdm
from climategan.data import get_all_loaders
from climategan.discriminator import OmniDiscriminator, create_discriminator
from climategan.eval_metrics import accuracy, mIOU
from climategan.fid import compute_val_fid
from climategan.fire import add_fire
from climategan.generator import OmniGenerator, create_generator
from climategan.logger import Logger
from climategan.losses import get_losses
from climategan.optim import get_optimizer
from climategan.transforms import DiffTransforms
from climategan.tutils import (
divide_pred,
get_num_params,
get_WGAN_gradient,
lrgb2srgb,
normalize,
print_num_parameters,
shuffle_batch_tuple,
srgb2lrgb,
vgg_preprocess,
zero_grad,
)
from climategan.utils import (
comet_kwargs,
div_dict,
find_target_size,
flatten_opts,
get_display_indices,
get_existing_comet_id,
get_latest_opts,
merge,
resolve,
sum_dict,
Timer,
)
try:
import torch_xla.core.xla_model as xm # type: ignore
except ImportError:
pass
class Trainer:
"""Main trainer class"""
def __init__(self, opts, comet_exp=None, verbose=0, device=None):
"""Trainer class to gather various model training procedures
such as training evaluating saving and logging
init:
* creates an addict.Dict logger
* creates logger.exp as a comet_exp experiment if `comet` arg is True
* sets the device (1 GPU or CPU)
Args:
opts (addict.Dict): options to configure the trainer, the data, the models
comet (bool, optional): whether to log the trainer with comet.ml.
Defaults to False.
verbose (int, optional): printing level to debug. Defaults to 0.
"""
super().__init__()
self.opts = opts
self.verbose = verbose
self.logger = Logger(self)
self.losses = None
self.G = self.D = None
self.real_val_fid_stats = None
self.use_pl4m = False
self.is_setup = False
self.loaders = self.all_loaders = None
self.exp = None
self.current_mode = "train"
self.diff_transforms = None
self.kitti_pretrain = self.opts.train.kitti.pretrain
self.pseudo_training_tasks = set(self.opts.train.pseudo.tasks)
self.lr_names = {}
self.base_display_images = {}
self.kitty_display_images = {}
self.domain_labels = {"s": 0, "r": 1}
self.device = device or torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu"
)
if isinstance(comet_exp, Experiment):
self.exp = comet_exp
if self.opts.train.amp:
optimizers = [
self.opts.gen.opt.optimizer.lower(),
self.opts.dis.opt.optimizer.lower(),
]
if "extraadam" in optimizers:
raise ValueError(
"AMP does not work with ExtraAdam ({})".format(optimizers)
)
self.grad_scaler_d = GradScaler()
self.grad_scaler_g = GradScaler()
# -------------------------------
# ----- Legacy Overwrites -----
# -------------------------------
if (
self.opts.gen.s.depth_feat_fusion is True
or self.opts.gen.s.depth_dada_fusion is True
):
self.opts.gen.s.use_dada = True
@torch.no_grad()
def paint_and_mask(self, image_batch, mask_batch=None, resolution="approx"):
"""
Paints a batch of images (or a single image with a batch dim of 1). If
masks are not provided, they are inferred from the masker.
Resolution can either be the train-time resolution or the closest
multiple of 2 ** spade_n_up
Operations performed without gradient
If resolution == "approx" then the output image has the shape:
(dim // 2 ** spade_n_up) * 2 ** spade_n_up, for dim in [height, width]
eg: (1000, 1300) => (896, 1280) for spade_n_up = 7
If resolution == "exact" then the output image has the same shape:
we first process in "approx" mode then upsample bilinear
If resolution == "basic" image output shape is the train-time's
(typically 640x640)
If resolution == "upsample" image is inferred as "basic" and
then upsampled to original size
Args:
image_batch (torch.Tensor): 4D batch of images to flood
mask_batch (torch.Tensor, optional): Masks for the images.
Defaults to None (infer with Masker).
resolution (str, optional): "approx", "exact" or False
Returns:
torch.Tensor: N x C x H x W where H and W depend on `resolution`
"""
assert resolution in {"approx", "exact", "basic", "upsample"}
previous_mode = self.current_mode
if previous_mode == "train":
self.eval_mode()
if mask_batch is None:
mask_batch = self.G.mask(x=image_batch)
else:
assert len(image_batch) == len(mask_batch)
assert image_batch.shape[-2:] == mask_batch.shape[-2:]
if resolution not in {"approx", "exact"}:
painted = self.G.paint(mask_batch, image_batch)
if resolution == "upsample":
painted = nn.functional.interpolate(
painted, size=image_batch.shape[-2:], mode="bilinear"
)
else:
# save latent shape
zh = self.G.painter.z_h
zw = self.G.painter.z_w
# adapt latent shape to approximately keep the resolution
self.G.painter.z_h = (
image_batch.shape[-2] // 2**self.opts.gen.p.spade_n_up
)
self.G.painter.z_w = (
image_batch.shape[-1] // 2**self.opts.gen.p.spade_n_up
)
painted = self.G.paint(mask_batch, image_batch)
self.G.painter.z_h = zh
self.G.painter.z_w = zw
if resolution == "exact":
painted = nn.functional.interpolate(
painted, size=image_batch.shape[-2:], mode="bilinear"
)
if previous_mode == "train":
self.train_mode()
return painted
def _p(self, *args, **kwargs):
"""
verbose-dependant print util
"""
if self.verbose > 0:
print(*args, **kwargs)
@torch.no_grad()
def infer_all(
self,
x,
numpy=True,
stores={},
bin_value=-1,
half=False,
xla=False,
cloudy=False,
auto_resize_640=False,
ignore_event=set(),
return_masks=False,
):
"""
Create a dictionnary of events from a numpy or tensor,
single or batch image data.
stores is a dictionnary of times for the Timer class.
bin_value is used to binarize (or not) flood masks
"""
assert self.is_setup
assert len(x.shape) in {3, 4}, f"Unknown Data shape {x.shape}"
# convert numpy to tensor
if not isinstance(x, torch.Tensor):
x = torch.tensor(x, device=self.device)
# add batch dimension
if len(x.shape) == 3:
x.unsqueeze_(0)
# permute channels as second dimension
if x.shape[1] != 3:
assert x.shape[-1] == 3, f"Unknown x shape to permute {x.shape}"
x = x.permute(0, 3, 1, 2)
# send to device
if x.device != self.device:
x = x.to(self.device)
# interpolate to standard input size
if auto_resize_640 and (x.shape[-1] != 640 or x.shape[-2] != 640):
x = torch.nn.functional.interpolate(x, (640, 640), mode="bilinear")
if half:
x = x.half()
# adjust painter's latent vector
self.G.painter.set_latent_shape(x.shape, True)
with Timer(store=stores.get("all events", [])):
# encode
with Timer(store=stores.get("encode", [])):
z = self.G.encode(x)
if xla:
xm.mark_step()
# predict from masker
with Timer(store=stores.get("depth", [])):
depth, z_depth = self.G.decoders["d"](z)
if xla:
xm.mark_step()
with Timer(store=stores.get("segmentation", [])):
segmentation = self.G.decoders["s"](z, z_depth)
if xla:
xm.mark_step()
with Timer(store=stores.get("mask", [])):
cond = self.G.make_m_cond(depth, segmentation, x)
mask = self.G.mask(z=z, cond=cond, z_depth=z_depth)
if xla:
xm.mark_step()
# apply events
if "wildfire" not in ignore_event:
with Timer(store=stores.get("wildfire", [])):
wildfire = self.compute_fire(x, seg_preds=segmentation)
if "smog" not in ignore_event:
with Timer(store=stores.get("smog", [])):
smog = self.compute_smog(x, d=depth, s=segmentation)
if "flood" not in ignore_event:
with Timer(store=stores.get("flood", [])):
flood = self.compute_flood(
x,
m=mask,
s=segmentation,
cloudy=cloudy,
bin_value=bin_value,
)
if xla:
xm.mark_step()
if numpy:
with Timer(store=stores.get("numpy", [])):
# normalize to 0-1
flood = normalize(flood).cpu()
smog = normalize(smog).cpu()
wildfire = normalize(wildfire).cpu()
# convert to numpy
flood = flood.permute(0, 2, 3, 1).numpy()
smog = smog.permute(0, 2, 3, 1).numpy()
wildfire = wildfire.permute(0, 2, 3, 1).numpy()
# convert to 0-255 uint8
flood = (flood * 255).astype(np.uint8)
smog = (smog * 255).astype(np.uint8)
wildfire = (wildfire * 255).astype(np.uint8)
output_data = {"flood": flood, "wildfire": wildfire, "smog": smog}
if return_masks:
output_data["mask"] = (
((mask > bin_value) * 255).cpu().numpy().astype(np.uint8)
)
return output_data
@classmethod
def resume_from_path(
cls,
path,
overrides={},
setup=True,
inference=False,
new_exp=False,
device=None,
verbose=1,
):
"""
Resume and optionally setup a trainer from a specific path,
using the latest opts and checkpoint. Requires path to contain opts.yaml
(or increased), url.txt (or increased) and checkpoints/
Args:
path (str | pathlib.Path): Trainer to resume
overrides (dict, optional): Override loaded opts with those. Defaults to {}.
setup (bool, optional): Wether or not to setup the trainer before
returning it. Defaults to True.
inference (bool, optional): Setup should be done in inference mode or not.
Defaults to False.
new_exp (bool, optional): Re-use existing comet exp in path or create
a new one? Defaults to False.
device (torch.device, optional): Device to use
Returns:
climategan.Trainer: Loaded and resumed trainer
"""
p = resolve(path)
assert p.exists()
c = p / "checkpoints"
assert c.exists() and c.is_dir()
opts = get_latest_opts(p)
opts = Dict(merge(overrides, opts))
opts.train.resume = True
if new_exp is None:
exp = None
elif new_exp is True:
exp = Experiment(project_name="climategan", **comet_kwargs)
exp.log_asset_folder(
str(resolve(Path(__file__)).parent),
recursive=True,
log_file_name=True,
)
exp.log_parameters(flatten_opts(opts))
else:
comet_id = get_existing_comet_id(p)
exp = ExistingExperiment(previous_experiment=comet_id, **comet_kwargs)
trainer = cls(opts, comet_exp=exp, device=device, verbose=verbose)
if setup:
trainer.setup(inference=inference)
return trainer
def save(self):
save_dir = Path(self.opts.output_path) / Path("checkpoints")
save_dir.mkdir(exist_ok=True)
save_path = save_dir / "latest_ckpt.pth"
# Construct relevant state dicts / optims:
# Save at least G
save_dict = {
"epoch": self.logger.epoch,
"G": self.G.state_dict(),
"g_opt": self.g_opt.state_dict(),
"step": self.logger.global_step,
}
if self.D is not None and get_num_params(self.D) > 0:
save_dict["D"] = self.D.state_dict()
save_dict["d_opt"] = self.d_opt.state_dict()
if (
self.logger.epoch >= self.opts.train.min_save_epoch
and self.logger.epoch % self.opts.train.save_n_epochs == 0
):
torch.save(save_dict, save_dir / f"epoch_{self.logger.epoch}_ckpt.pth")
torch.save(save_dict, save_path)
def resume(self, inference=False):
tpu = "xla" in str(self.device)
if tpu:
print("Resuming on TPU:", self.device)
m_path = Path(self.opts.load_paths.m)
p_path = Path(self.opts.load_paths.p)
pm_path = Path(self.opts.load_paths.pm)
output_path = Path(self.opts.output_path)
map_loc = self.device if not tpu else "cpu"
if "m" in self.opts.tasks and "p" in self.opts.tasks:
# ----------------------------------------
# ----- Masker and Painter Loading -----
# ----------------------------------------
# want to resume a pm model but no path was provided:
# resume a single pm model from output_path
if all([str(p) == "none" for p in [m_path, p_path, pm_path]]):
checkpoint_path = output_path / "checkpoints/latest_ckpt.pth"
print("Resuming P+M model from", str(checkpoint_path))
checkpoint = torch.load(checkpoint_path, map_location=map_loc)
# want to resume a pm model with a pm_path provided:
# resume a single pm model from load_paths.pm
# depending on whether a dir or a file is specified
elif str(pm_path) != "none":
assert pm_path.exists()
if pm_path.is_dir():
checkpoint_path = pm_path / "checkpoints/latest_ckpt.pth"
else:
assert pm_path.suffix == ".pth"
checkpoint_path = pm_path
print("Resuming P+M model from", str(checkpoint_path))
checkpoint = torch.load(checkpoint_path, map_location=map_loc)
# want to resume a pm model, pm_path not provided:
# m_path and p_path must be provided as dirs or pth files
elif m_path != p_path:
assert m_path.exists()
assert p_path.exists()
if m_path.is_dir():
m_path = m_path / "checkpoints/latest_ckpt.pth"
if p_path.is_dir():
p_path = p_path / "checkpoints/latest_ckpt.pth"
assert m_path.suffix == ".pth"
assert p_path.suffix == ".pth"
print(f"Resuming P+M model from \n -{p_path} \nand \n -{m_path}")
m_checkpoint = torch.load(m_path, map_location=map_loc)
p_checkpoint = torch.load(p_path, map_location=map_loc)
checkpoint = merge(m_checkpoint, p_checkpoint)
else:
raise ValueError(
"Cannot resume a P+M model with provided load_paths:\n{}".format(
self.opts.load_paths
)
)
else:
# ----------------------------------
# ----- Single Model Loading -----
# ----------------------------------
# cannot specify both paths
if str(m_path) != "none" and str(p_path) != "none":
raise ValueError(
"Opts tasks are {} but received 2 values for the load_paths".format(
self.opts.tasks
)
)
# specified m
elif str(m_path) != "none":
assert m_path.exists()
assert "m" in self.opts.tasks
model = "M"
if m_path.is_dir():
m_path = m_path / "checkpoints/latest_ckpt.pth"
checkpoint_path = m_path
# specified m
elif str(p_path) != "none":
assert p_path.exists()
assert "p" in self.opts.tasks
model = "P"
if p_path.is_dir():
p_path = p_path / "checkpoints/latest_ckpt.pth"
checkpoint_path = p_path
# specified neither p nor m: resume from output_path
else:
model = "P" if "p" in self.opts.tasks else "M"
checkpoint_path = output_path / "checkpoints/latest_ckpt.pth"
print(f"Resuming {model} model from {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=map_loc)
# On TPUs must send the data to the xla device as it cannot be mapped
# there directly from torch.load
if tpu:
checkpoint = xm.send_cpu_data_to_device(checkpoint, self.device)
# -----------------------
# ----- Restore G -----
# -----------------------
if inference:
incompatible_keys = self.G.load_state_dict(checkpoint["G"], strict=False)
if incompatible_keys.missing_keys:
print("WARNING: Missing keys in self.G.load_state_dict, keeping inits")
print(incompatible_keys.missing_keys)
if incompatible_keys.unexpected_keys:
print("WARNING: Ignoring Unexpected keys in self.G.load_state_dict")
print(incompatible_keys.unexpected_keys)
else:
self.G.load_state_dict(checkpoint["G"])
if inference:
# only G is needed to infer
print("Done loading checkpoints.")
return
self.g_opt.load_state_dict(checkpoint["g_opt"])
# ------------------------------
# ----- Resume scheduler -----
# ------------------------------
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
for _ in range(self.logger.epoch + 1):
self.update_learning_rates()
# -----------------------
# ----- Restore D -----
# -----------------------
if self.D is not None and get_num_params(self.D) > 0:
self.D.load_state_dict(checkpoint["D"])
self.d_opt.load_state_dict(checkpoint["d_opt"])
# ---------------------------
# ----- Resore logger -----
# ---------------------------
self.logger.epoch = checkpoint["epoch"]
self.logger.global_step = checkpoint["step"]
self.exp.log_text(
"Resuming from epoch {} & step {}".format(
checkpoint["epoch"], checkpoint["step"]
)
)
# Round step to even number for extraGradient
if self.logger.global_step % 2 != 0:
self.logger.global_step += 1
def eval_mode(self):
"""
Set trainer's models in eval mode
"""
if self.G is not None:
self.G.eval()
if self.D is not None:
self.D.eval()
self.current_mode = "eval"
def train_mode(self):
"""
Set trainer's models in train mode
"""
if self.G is not None:
self.G.train()
if self.D is not None:
self.D.train()
self.current_mode = "train"
def assert_z_matches_x(self, x, z):
assert x.shape[0] == (
z.shape[0] if not isinstance(z, (list, tuple)) else z[0].shape[0]
), "x-> {}, z->{}".format(
x.shape, z.shape if not isinstance(z, (list, tuple)) else z[0].shape
)
def batch_to_device(self, b):
"""sends the data in b to self.device
Args:
b (dict): the batch dictionnay
Returns:
dict: the batch dictionnary with its "data" field sent to self.device
"""
for task, tensor in b["data"].items():
b["data"][task] = tensor.to(self.device)
return b
def sample_painter_z(self, batch_size):
return self.G.sample_painter_z(batch_size, self.device)
@property
def train_loaders(self):
"""Get a zip of all training loaders
Returns:
generator: zip generator yielding tuples:
(batch_rf, batch_rn, batch_sf, batch_sn)
"""
return zip(*list(self.loaders["train"].values()))
@property
def val_loaders(self):
"""Get a zip of all validation loaders
Returns:
generator: zip generator yielding tuples:
(batch_rf, batch_rn, batch_sf, batch_sn)
"""
return zip(*list(self.loaders["val"].values()))
def compute_latent_shape(self):
"""Compute the latent shape, i.e. the Encoder's output shape,
from a batch.
Raises:
ValueError: If no loader, the latent_shape cannot be inferred
Returns:
tuple: (c, h, w)
"""
x = None
for mode in self.all_loaders:
for domain in self.all_loaders.loaders[mode]:
x = (
self.all_loaders[mode][domain]
.dataset[0]["data"]["x"]
.to(self.device)
)
break
if x is not None:
break
if x is None:
raise ValueError("No batch found to compute_latent_shape")
x = x.unsqueeze(0)
z = self.G.encode(x)
return z.shape[1:] if not isinstance(z, (list, tuple)) else z[0].shape[1:]
def g_opt_step(self):
"""Run an optimizing step ; if using ExtraAdam, there needs to be an extrapolation
step every other step
"""
if "extra" in self.opts.gen.opt.optimizer.lower() and (
self.logger.global_step % 2 == 0
):
self.g_opt.extrapolation()
else:
self.g_opt.step()
def d_opt_step(self):
"""Run an optimizing step ; if using ExtraAdam, there needs to be an extrapolation
step every other step
"""
if "extra" in self.opts.dis.opt.optimizer.lower() and (
self.logger.global_step % 2 == 0
):
self.d_opt.extrapolation()
else:
self.d_opt.step()
def update_learning_rates(self):
if self.g_scheduler is not None:
self.g_scheduler.step()
if self.d_scheduler is not None:
self.d_scheduler.step()
def setup(self, inference=False):
"""Prepare the trainer before it can be used to train the models:
* initialize G and D
* creates 2 optimizers
"""
self.logger.global_step = 0
start_time = time()
self.logger.time.start_time = start_time
verbose = self.verbose
if not inference:
self.all_loaders = get_all_loaders(self.opts)
# -----------------------
# ----- Generator -----
# -----------------------
__t = time()
print("Creating generator...")
self.G: OmniGenerator = create_generator(
self.opts, device=self.device, no_init=inference, verbose=verbose
)
self.has_painter = get_num_params(self.G.painter) or self.G.load_val_painter()
if self.has_painter:
self.G.painter.set_latent_shape(find_target_size(self.opts, "x"), True)
print(f"Generator OK in {time() - __t:.1f}s.")
if inference: # Inference mode: no more than a Generator needed
print("Inference mode: no Discriminator, no optimizers")
print_num_parameters(self)
self.switch_data(to="base")
if self.opts.train.resume:
self.resume(True)
self.eval_mode()
print("Trainer is in evaluation mode.")
print("Setup done.")
self.is_setup = True
return
# ---------------------------
# ----- Discriminator -----
# ---------------------------
self.D: OmniDiscriminator = create_discriminator(
self.opts, self.device, verbose=verbose
)
print("Discriminator OK.")
print_num_parameters(self)
# --------------------------
# ----- Optimization -----
# --------------------------
# Get different optimizers for each task (different learning rates)
self.g_opt, self.g_scheduler, self.lr_names["G"] = get_optimizer(
self.G, self.opts.gen.opt, self.opts.tasks
)
if get_num_params(self.D) > 0:
self.d_opt, self.d_scheduler, self.lr_names["D"] = get_optimizer(
self.D, self.opts.dis.opt, self.opts.tasks, True
)
else:
self.d_opt, self.d_scheduler = None, None
self.losses = get_losses(self.opts, verbose, device=self.device)
if "p" in self.opts.tasks and self.opts.gen.p.diff_aug.use:
self.diff_transforms = DiffTransforms(self.opts.gen.p.diff_aug)
if verbose > 0:
for mode, mode_dict in self.all_loaders.items():
for domain, domain_loader in mode_dict.items():
print(
"Loader {} {} : {}".format(
mode, domain, len(domain_loader.dataset)
)
)
# ----------------------------
# ----- Display images -----
# ----------------------------
self.set_display_images()
# -------------------------------
# ----- Log Architectures -----
# -------------------------------
self.logger.log_architecture()
# -----------------------------
# ----- Set data source -----
# -----------------------------
if self.kitti_pretrain:
self.switch_data(to="kitti")
else:
self.switch_data(to="base")
# -------------------------
# ----- Setup Done. -----
# -------------------------
print(" " * 50, end="\r")
print("Done creating display images")
if self.opts.train.resume:
print("Resuming Model (inference: False)")
self.resume(False)
else:
print("Not resuming: starting a new model")
print("Setup done.")
self.is_setup = True
def switch_data(self, to="kitti"):
caller = inspect.stack()[1].function
print(f"[{caller}] Switching data source to", to)
self.data_source = to
if to == "kitti":
self.display_images = self.kitty_display_images
if self.all_loaders is not None:
self.loaders = {
mode: {"s": self.all_loaders[mode]["kitti"]}
for mode in self.all_loaders
}
else:
self.display_images = self.base_display_images
if self.all_loaders is not None:
self.loaders = {
mode: {
domain: self.all_loaders[mode][domain]
for domain in self.all_loaders[mode]
if domain != "kitti"
}
for mode in self.all_loaders
}
if (
self.logger.global_step % 2 != 0
and "extra" in self.opts.dis.opt.optimizer.lower()
):
print(
"Warning: artificially bumping step to run an extrapolation step first."
)
self.logger.global_step += 1
def set_display_images(self, use_all=False):
for mode, mode_dict in self.all_loaders.items():
if self.kitti_pretrain:
self.kitty_display_images[mode] = {}
self.base_display_images[mode] = {}
for domain in mode_dict:
if self.kitti_pretrain and domain == "kitti":
target_dict = self.kitty_display_images
else:
if domain == "kitti":
continue
target_dict = self.base_display_images
dataset = self.all_loaders[mode][domain].dataset
display_indices = (
get_display_indices(self.opts, domain, len(dataset))
if not use_all
else list(range(len(dataset)))
)
ldis = len(display_indices)
print(
f" Creating {ldis} {mode} {domain} display images...",
end="\r",
flush=True,
)
target_dict[mode][domain] = [
Dict(dataset[i])
for i in display_indices
if (print(f"({i})", end="\r") is None and i < len(dataset))
]
if self.exp is not None:
for im_id, d in enumerate(target_dict[mode][domain]):
self.exp.log_parameter(
"display_image_{}_{}_{}".format(mode, domain, im_id),
d["paths"],
)
def train(self):
"""For each epoch:
* train
* eval
* save
"""
assert self.is_setup
for self.logger.epoch in range(
self.logger.epoch, self.logger.epoch + self.opts.train.epochs
):
# backprop painter's disc loss to masker
if (
self.logger.epoch == self.opts.gen.p.pl4m_epoch
and get_num_params(self.G.painter) > 0
and "p" in self.opts.tasks
and self.opts.gen.m.use_pl4m
):
print(
"\n\n >>> Enabling pl4m at epoch {}\n\n".format(self.logger.epoch)
)
self.use_pl4m = True
self.run_epoch()
self.run_evaluation(verbose=1)
self.save()
# end vkitti2 pre-training
if self.logger.epoch == self.opts.train.kitti.epochs - 1:
self.switch_data(to="base")
self.kitti_pretrain = False
# end pseudo training
if self.logger.epoch == self.opts.train.pseudo.epochs - 1:
self.pseudo_training_tasks = set()
def run_epoch(self):
"""Runs an epoch:
* checks trainer is setup
* gets a tuple of batches per domain
* sends batches to device
* updates sequentially G, D
"""
assert self.is_setup
self.train_mode()
if self.exp is not None:
self.exp.log_parameter("epoch", self.logger.epoch)
epoch_len = min(len(loader) for loader in self.loaders["train"].values())
epoch_desc = "Epoch {}".format(self.logger.epoch)
self.logger.time.epoch_start = time()
for multi_batch_tuple in tqdm(
self.train_loaders,
desc=epoch_desc,
total=epoch_len,
mininterval=0.5,
unit="batch",
):
self.logger.time.step_start = time()
multi_batch_tuple = shuffle_batch_tuple(multi_batch_tuple)
# The `[0]` is because the domain is contained in a list
multi_domain_batch = {
batch["domain"][0]: self.batch_to_device(batch)
for batch in multi_batch_tuple
}
# ------------------------------
# ----- Update Generator -----
# ------------------------------
# freeze params of the discriminator
if self.d_opt is not None:
for param in self.D.parameters():
param.requires_grad = False
self.update_G(multi_domain_batch)
# ----------------------------------
# ----- Update Discriminator -----
# ----------------------------------
# unfreeze params of the discriminator
if self.d_opt is not None and not self.kitti_pretrain:
for param in self.D.parameters():
param.requires_grad = True
self.update_D(multi_domain_batch)
# -------------------------
# ----- Log Metrics -----
# -------------------------
self.logger.global_step += 1
self.logger.log_step_time(time())
if not self.kitti_pretrain:
self.update_learning_rates()
self.logger.log_learning_rates()
self.logger.log_epoch_time(time())
def update_G(self, multi_domain_batch, verbose=0):
"""Perform an update on g from multi_domain_batch which is a dictionary
domain => batch
* automatic mixed precision according to self.opts.train.amp
* compute loss for each task
* loss.backward()
* g_opt_step()
* g_opt.step() or .extrapolation() depending on self.logger.global_step
* logs losses on comet.ml with self.logger.log_losses(model_to_update="G")
Args:
multi_domain_batch (dict): dictionnary of domain batches
"""
zero_grad(self.G)
if self.opts.train.amp:
with autocast():
g_loss = self.get_G_loss(multi_domain_batch, verbose)
self.grad_scaler_g.scale(g_loss).backward()
self.grad_scaler_g.step(self.g_opt)
self.grad_scaler_g.update()
else:
g_loss = self.get_G_loss(multi_domain_batch, verbose)
g_loss.backward()
self.g_opt_step()
self.logger.log_losses(model_to_update="G", mode="train")
def update_D(self, multi_domain_batch, verbose=0):
zero_grad(self.D)
if self.opts.train.amp:
with autocast():
d_loss = self.get_D_loss(multi_domain_batch, verbose)
self.grad_scaler_d.scale(d_loss).backward()
self.grad_scaler_d.step(self.d_opt)
self.grad_scaler_d.update()
else:
d_loss = self.get_D_loss(multi_domain_batch, verbose)
d_loss.backward()
self.d_opt_step()
self.logger.losses.disc.total_loss = d_loss.item()
self.logger.log_losses(model_to_update="D", mode="train")
def get_D_loss(self, multi_domain_batch, verbose=0):
"""Compute the discriminators' losses:
* for each domain-specific batch:
* encode the image
* get the conditioning tensor if using spade
* source domain is the data's domain, sequentially r|s then f|n
* get the target domain accordingly
* compute the translated image from the data
* compute the source domain discriminator's loss on the data
* compute the target domain discriminator's loss on the translated image
# ? In this setting, each D[decoder][domain] is updated twice towards
# real or fake data
See readme's update d section for details
Args:
multi_domain_batch ([type]): [description]
Returns:
[type]: [description]
"""
disc_loss = {
"m": {"Advent": 0},
"s": {"Advent": 0},
}
if self.opts.dis.p.use_local_discriminator:
disc_loss["p"] = {"global": 0, "local": 0}
else:
disc_loss["p"] = {"gan": 0}
for domain, batch in multi_domain_batch.items():
x = batch["data"]["x"]
# ---------------------
# ----- Painter -----
# ---------------------
if domain == "rf" and self.has_painter:
m = batch["data"]["m"]
# sample vector
with torch.no_grad():
# see spade compute_discriminator_loss
fake = self.G.paint(m, x)
if self.opts.gen.p.diff_aug.use:
fake = self.diff_transforms(fake)
x = self.diff_transforms(x)
fake = fake.detach()
fake.requires_grad_()
if self.opts.dis.p.use_local_discriminator:
fake_d_global = self.D["p"]["global"](fake)
real_d_global = self.D["p"]["global"](x)
fake_d_local = self.D["p"]["local"](fake * m)
real_d_local = self.D["p"]["local"](x * m)
global_loss = self.losses["D"]["p"](fake_d_global, False, True)
global_loss += self.losses["D"]["p"](real_d_global, True, True)
local_loss = self.losses["D"]["p"](fake_d_local, False, True)
local_loss += self.losses["D"]["p"](real_d_local, True, True)
disc_loss["p"]["global"] += global_loss
disc_loss["p"]["local"] += local_loss
else:
real_cat = torch.cat([m, x], axis=1)
fake_cat = torch.cat([m, fake], axis=1)
real_fake_cat = torch.cat([real_cat, fake_cat], dim=0)
real_fake_d = self.D["p"](real_fake_cat)
real_d, fake_d = divide_pred(real_fake_d)
disc_loss["p"]["gan"] = self.losses["D"]["p"](fake_d, False, True)
disc_loss["p"]["gan"] += self.losses["D"]["p"](real_d, True, True)
# --------------------
# ----- Masker -----
# --------------------
else:
z = self.G.encode(x)
s_pred = d_pred = cond = z_depth = None
if "s" in batch["data"]:
if "d" in self.opts.tasks and self.opts.gen.s.use_dada:
d_pred, z_depth = self.G.decoders["d"](z)
step_loss, s_pred = self.masker_s_loss(
x, z, d_pred, z_depth, None, domain, for_="D"
)
step_loss *= self.opts.train.lambdas.advent.adv_main
disc_loss["s"]["Advent"] += step_loss
if "m" in batch["data"]:
if "d" in self.opts.tasks:
if self.opts.gen.m.use_spade:
if d_pred is None:
d_pred, z_depth = self.G.decoders["d"](z)
cond = self.G.make_m_cond(d_pred, s_pred, x)
elif self.opts.gen.m.use_dada:
if d_pred is None:
d_pred, z_depth = self.G.decoders["d"](z)
step_loss, _ = self.masker_m_loss(
x,
z,
None,
domain,
for_="D",
cond=cond,
z_depth=z_depth,
depth_preds=d_pred,
)
step_loss *= self.opts.train.lambdas.advent.adv_main
disc_loss["m"]["Advent"] += step_loss
self.logger.losses.disc.update(
{
dom: {
k: v.item() if isinstance(v, torch.Tensor) else v
for k, v in d.items()
}
for dom, d in disc_loss.items()
}
)
loss = sum(v for d in disc_loss.values() for k, v in d.items())
return loss
def get_G_loss(self, multi_domain_batch, verbose=0):
m_loss = p_loss = None
# For now, always compute "representation loss"
g_loss = 0
if any(t in self.opts.tasks for t in "msd"):
m_loss = self.get_masker_loss(multi_domain_batch)
self.logger.losses.gen.masker = m_loss.item()
g_loss += m_loss
if "p" in self.opts.tasks and not self.kitti_pretrain:
p_loss = self.get_painter_loss(multi_domain_batch)
self.logger.losses.gen.painter = p_loss.item()
g_loss += p_loss
assert g_loss != 0 and not isinstance(g_loss, int), "No update in get_G_loss!"
self.logger.losses.gen.total_loss = g_loss.item()
return g_loss
def get_masker_loss(self, multi_domain_batch): # TODO update docstrings
"""Only update the representation part of the model, meaning everything
but the translation part
* for each batch in available domains:
* compute task-specific losses
* compute the adaptation and translation decoders' auto-encoding losses
* compute the adaptation decoder's translation losses (GAN and Cycle)
Args:
multi_domain_batch (dict): dictionnary mapping domain names to batches from
the trainer's loaders
Returns:
torch.Tensor: scalar loss tensor, weighted according to opts.train.lambdas
"""
m_loss = 0
for domain, batch in multi_domain_batch.items():
# We don't care about the flooded domain here
if domain == "rf":
continue
x = batch["data"]["x"]
z = self.G.encode(x)
# --------------------------------------
# ----- task-specific losses (2) -----
# --------------------------------------
d_pred = s_pred = z_depth = None
for task in ["d", "s", "m"]:
if task not in batch["data"]:
continue
target = batch["data"][task]
if task == "d":
loss, d_pred, z_depth = self.masker_d_loss(
x, z, target, domain, "G"
)
m_loss += loss
self.logger.losses.gen.task["d"][domain] = loss.item()
elif task == "s":
loss, s_pred = self.masker_s_loss(
x, z, d_pred, z_depth, target, domain, "G"
)
m_loss += loss
self.logger.losses.gen.task["s"][domain] = loss.item()
elif task == "m":
cond = None
if self.opts.gen.m.use_spade:
if not self.opts.gen.m.detach:
d_pred = d_pred.clone()
s_pred = s_pred.clone()
cond = self.G.make_m_cond(d_pred, s_pred, x)
loss, _ = self.masker_m_loss(
x,
z,
target,
domain,
"G",
cond=cond,
z_depth=z_depth,
depth_preds=d_pred,
)
m_loss += loss
self.logger.losses.gen.task["m"][domain] = loss.item()
return m_loss
def get_painter_loss(self, multi_domain_batch):
"""Computes the translation loss when flooding/deflooding images
Args:
multi_domain_batch (dict): dictionnary mapping domain names to batches from
the trainer's loaders
Returns:
torch.Tensor: scalar loss tensor, weighted according to opts.train.lambdas
"""
step_loss = 0
# self.g_opt.zero_grad()
lambdas = self.opts.train.lambdas
batch_domain = "rf"
batch = multi_domain_batch[batch_domain]
x = batch["data"]["x"]
# ! different mask: hides water to be reconstructed
# ! 1 for water, 0 otherwise
m = batch["data"]["m"]
fake_flooded = self.G.paint(m, x)
# ----------------------
# ----- VGG Loss -----
# ----------------------
if lambdas.G.p.vgg != 0:
loss = self.losses["G"]["p"]["vgg"](
vgg_preprocess(fake_flooded * m), vgg_preprocess(x * m)
)
loss *= lambdas.G.p.vgg
self.logger.losses.gen.p.vgg = loss.item()
step_loss += loss
# ---------------------
# ----- TV Loss -----
# ---------------------
if lambdas.G.p.tv != 0:
loss = self.losses["G"]["p"]["tv"](fake_flooded * m)
loss *= lambdas.G.p.tv
self.logger.losses.gen.p.tv = loss.item()
step_loss += loss
# --------------------------
# ----- Context Loss -----
# --------------------------
if lambdas.G.p.context != 0:
loss = self.losses["G"]["p"]["context"](fake_flooded, x, m)
loss *= lambdas.G.p.context
self.logger.losses.gen.p.context = loss.item()
step_loss += loss
# ---------------------------------
# ----- Reconstruction Loss -----
# ---------------------------------
if lambdas.G.p.reconstruction != 0:
loss = self.losses["G"]["p"]["reconstruction"](fake_flooded, x, m)
loss *= lambdas.G.p.reconstruction
self.logger.losses.gen.p.reconstruction = loss.item()
step_loss += loss
# -------------------------------------
# ----- Local & Global GAN Loss -----
# -------------------------------------
if self.opts.gen.p.diff_aug.use:
fake_flooded = self.diff_transforms(fake_flooded)
x = self.diff_transforms(x)
if self.opts.dis.p.use_local_discriminator:
fake_d_global = self.D["p"]["global"](fake_flooded)
fake_d_local = self.D["p"]["local"](fake_flooded * m)
real_d_global = self.D["p"]["global"](x)
# Note: discriminator returns [out_1,...,out_num_D] outputs
# Each out_i is a list [feat1, feat2, ..., pred_i]
self.logger.losses.gen.p.gan = 0
loss = self.losses["G"]["p"]["gan"](fake_d_global, True, False)
loss += self.losses["G"]["p"]["gan"](fake_d_local, True, False)
loss *= lambdas.G["p"]["gan"]
self.logger.losses.gen.p.gan = loss.item()
step_loss += loss
# -----------------------------------
# ----- Feature Matching Loss -----
# -----------------------------------
# (only on global discriminator)
# Order must be real, fake
if self.opts.dis.p.get_intermediate_features:
loss = self.losses["G"]["p"]["featmatch"](real_d_global, fake_d_global)
loss *= lambdas.G["p"]["featmatch"]
if isinstance(loss, float):
self.logger.losses.gen.p.featmatch = loss
else:
self.logger.losses.gen.p.featmatch = loss.item()
step_loss += loss
# -------------------------------------------
# ----- Single Discriminator GAN Loss -----
# -------------------------------------------
else:
real_cat = torch.cat([m, x], axis=1)
fake_cat = torch.cat([m, fake_flooded], axis=1)
real_fake_cat = torch.cat([real_cat, fake_cat], dim=0)
real_fake_d = self.D["p"](real_fake_cat)
real_d, fake_d = divide_pred(real_fake_d)
loss = self.losses["G"]["p"]["gan"](fake_d, True, False)
self.logger.losses.gen.p.gan = loss.item()
step_loss += loss
# -----------------------------------
# ----- Feature Matching Loss -----
# -----------------------------------
if self.opts.dis.p.get_intermediate_features and lambdas.G.p.featmatch != 0:
loss = self.losses["G"]["p"]["featmatch"](real_d, fake_d)
loss *= lambdas.G.p.featmatch
if isinstance(loss, float):
self.logger.losses.gen.p.featmatch = loss
else:
self.logger.losses.gen.p.featmatch = loss.item()
step_loss += loss
return step_loss
def masker_d_loss(self, x, z, target, domain, for_="G"):
assert for_ in {"G", "D"}
self.assert_z_matches_x(x, z)
assert x.shape[0] == target.shape[0]
zero_loss = torch.tensor(0.0, device=self.device)
weight = self.opts.train.lambdas.G.d.main
prediction, z_depth = self.G.decoders["d"](z)
if self.opts.gen.d.classify.enable:
target.squeeze_(1)
full_loss = self.losses["G"]["tasks"]["d"](prediction, target)
full_loss *= weight
if weight == 0 or (domain == "r" and "d" not in self.pseudo_training_tasks):
return zero_loss, prediction, z_depth
return full_loss, prediction, z_depth
def masker_s_loss(self, x, z, depth_preds, z_depth, target, domain, for_="G"):
assert for_ in {"G", "D"}
assert domain in {"r", "s"}
self.assert_z_matches_x(x, z)
assert x.shape[0] == target.shape[0] if target is not None else True
full_loss = torch.tensor(0.0, device=self.device)
softmax_preds = None
# --------------------------
# ----- Segmentation -----
# --------------------------
pred = None
if for_ == "G" or self.opts.gen.s.use_advent:
pred = self.G.decoders["s"](z, z_depth)
# Supervised segmentation loss: crossent for sim domain,
# crossent_pseudo for real ; loss is crossent in any case
if for_ == "G":
if domain == "s" or "s" in self.pseudo_training_tasks:
if domain == "s":
logger = self.logger.losses.gen.task["s"]["crossent"]
weight = self.opts.train.lambdas.G["s"]["crossent"]
else:
logger = self.logger.losses.gen.task["s"]["crossent_pseudo"]
weight = self.opts.train.lambdas.G["s"]["crossent_pseudo"]
if weight != 0:
# Cross-Entropy loss
loss_func = self.losses["G"]["tasks"]["s"]["crossent"]
loss = loss_func(pred, target.squeeze(1))
loss *= weight
full_loss += loss
logger[domain] = loss.item()
if domain == "r":
weight = self.opts.train.lambdas.G["s"]["minent"]
if self.opts.gen.s.use_minent and weight != 0:
softmax_preds = softmax(pred, dim=1)
# Entropy minimization loss
loss = self.losses["G"]["tasks"]["s"]["minent"](softmax_preds)
loss *= weight
full_loss += loss
self.logger.losses.gen.task["s"]["minent"]["r"] = loss.item()
# Fool ADVENT discriminator
if self.opts.gen.s.use_advent:
if self.opts.gen.s.use_dada and depth_preds is not None:
depth_preds = depth_preds.detach()
else:
depth_preds = None
if for_ == "D":
domain_label = domain
logger = {}
loss_func = self.losses["D"]["advent"]
pred = pred.detach()
weight = self.opts.train.lambdas.advent.adv_main
else:
domain_label = "s"
logger = self.logger.losses.gen.task["s"]["advent"]
loss_func = self.losses["G"]["tasks"]["s"]["advent"]
weight = self.opts.train.lambdas.G["s"]["advent"]
if (for_ == "D" or domain == "r") and weight != 0:
if softmax_preds is None:
softmax_preds = softmax(pred, dim=1)
loss = loss_func(
softmax_preds,
self.domain_labels[domain_label],
self.D["s"]["Advent"],
depth_preds,
)
loss *= weight
full_loss += loss
logger[domain] = loss.item()
if for_ == "D":
# WGAN: clipping or GP
if self.opts.dis.s.gan_type == "GAN" or "WGAN_norm":
pass
elif self.opts.dis.s.gan_type == "WGAN":
for p in self.D["s"]["Advent"].parameters():
p.data.clamp_(
self.opts.dis.s.wgan_clamp_lower,
self.opts.dis.s.wgan_clamp_upper,
)
elif self.opts.dis.s.gan_type == "WGAN_gp":
prob_need_grad = autograd.Variable(pred, requires_grad=True)
d_out = self.D["s"]["Advent"](prob_need_grad)
gp = get_WGAN_gradient(prob_need_grad, d_out)
gp_loss = gp * self.opts.train.lambdas.advent.WGAN_gp
full_loss += gp_loss
else:
raise NotImplementedError
return full_loss, pred
def masker_m_loss(
self, x, z, target, domain, for_="G", cond=None, z_depth=None, depth_preds=None
):
assert for_ in {"G", "D"}
assert domain in {"r", "s"}
self.assert_z_matches_x(x, z)
assert x.shape[0] == target.shape[0] if target is not None else True
full_loss = torch.tensor(0.0, device=self.device)
pred_logits = self.G.decoders["m"](z, cond=cond, z_depth=z_depth)
pred_prob = sigmoid(pred_logits)
pred_prob_complementary = 1 - pred_prob
prob = torch.cat([pred_prob, pred_prob_complementary], dim=1)
if for_ == "G":
# TV loss
weight = self.opts.train.lambdas.G.m.tv
if weight != 0:
loss = self.losses["G"]["tasks"]["m"]["tv"](pred_prob)
loss *= weight
full_loss += loss
self.logger.losses.gen.task["m"]["tv"][domain] = loss.item()
weight = self.opts.train.lambdas.G.m.bce
if domain == "s" and weight != 0:
# CrossEnt Loss
loss = self.losses["G"]["tasks"]["m"]["bce"](pred_logits, target)
loss *= weight
full_loss += loss
self.logger.losses.gen.task["m"]["bce"]["s"] = loss.item()
if domain == "r":
weight = self.opts.train.lambdas.G["m"]["gi"]
if self.opts.gen.m.use_ground_intersection and weight != 0:
# GroundIntersection loss
loss = self.losses["G"]["tasks"]["m"]["gi"](pred_prob, target)
loss *= weight
full_loss += loss
self.logger.losses.gen.task["m"]["gi"]["r"] = loss.item()
weight = self.opts.train.lambdas.G.m.pl4m
if self.use_pl4m and weight != 0:
# Painter loss
pl4m_loss = self.painter_loss_for_masker(x, pred_prob)
pl4m_loss *= weight
full_loss += pl4m_loss
self.logger.losses.gen.task.m.pl4m.r = pl4m_loss.item()
weight = self.opts.train.lambdas.advent.ent_main
if self.opts.gen.m.use_minent and weight != 0:
# MinEnt loss
loss = self.losses["G"]["tasks"]["m"]["minent"](prob)
loss *= weight
full_loss += loss
self.logger.losses.gen.task["m"]["minent"]["r"] = loss.item()
if self.opts.gen.m.use_advent:
# AdvEnt loss
if self.opts.gen.m.use_dada and depth_preds is not None:
depth_preds = depth_preds.detach()
depth_preds = torch.nn.functional.interpolate(
depth_preds, size=x.shape[-2:], mode="nearest"
)
else:
depth_preds = None
if for_ == "D":
domain_label = domain
logger = {}
loss_func = self.losses["D"]["advent"]
prob = prob.detach()
weight = self.opts.train.lambdas.advent.adv_main
else:
domain_label = "s"
logger = self.logger.losses.gen.task["m"]["advent"]
loss_func = self.losses["G"]["tasks"]["m"]["advent"]
weight = self.opts.train.lambdas.advent.adv_main
if (for_ == "D" or domain == "r") and weight != 0:
loss = loss_func(
prob.to(self.device),
self.domain_labels[domain_label],
self.D["m"]["Advent"],
depth_preds,
)
loss *= weight
full_loss += loss
logger[domain] = loss.item()
if for_ == "D":
# WGAN: clipping or GP
if self.opts.dis.m.gan_type == "GAN" or "WGAN_norm":
pass
elif self.opts.dis.m.gan_type == "WGAN":
for p in self.D["s"]["Advent"].parameters():
p.data.clamp_(
self.opts.dis.m.wgan_clamp_lower,
self.opts.dis.m.wgan_clamp_upper,
)
elif self.opts.dis.m.gan_type == "WGAN_gp":
prob_need_grad = autograd.Variable(prob, requires_grad=True)
d_out = self.D["s"]["Advent"](prob_need_grad)
gp = get_WGAN_gradient(prob_need_grad, d_out)
gp_loss = self.opts.train.lambdas.advent.WGAN_gp * gp
full_loss += gp_loss
else:
raise NotImplementedError
return full_loss, prob
def painter_loss_for_masker(self, x, m):
# pl4m loss
# painter should not be updated
for param in self.G.painter.parameters():
param.requires_grad = False
# TODO for param in self.D.painter.parameters():
# param.requires_grad = False
fake_flooded = self.G.paint(m, x)
if self.opts.dis.p.use_local_discriminator:
fake_d_global = self.D["p"]["global"](fake_flooded)
fake_d_local = self.D["p"]["local"](fake_flooded * m)
# Note: discriminator returns [out_1,...,out_num_D] outputs
# Each out_i is a list [feat1, feat2, ..., pred_i]
pl4m_loss = self.losses["G"]["p"]["gan"](fake_d_global, True, False)
pl4m_loss += self.losses["G"]["p"]["gan"](fake_d_local, True, False)
else:
real_cat = torch.cat([m, x], axis=1)
fake_cat = torch.cat([m, fake_flooded], axis=1)
real_fake_cat = torch.cat([real_cat, fake_cat], dim=0)
real_fake_d = self.D["p"](real_fake_cat)
_, fake_d = divide_pred(real_fake_d)
pl4m_loss = self.losses["G"]["p"]["gan"](fake_d, True, False)
if "p" in self.opts.tasks:
for param in self.G.painter.parameters():
param.requires_grad = True
return pl4m_loss
@torch.no_grad()
def run_evaluation(self, verbose=0):
print("******************* Running Evaluation ***********************")
start_time = time()
self.eval_mode()
val_logger = None
nb_of_batches = None
for i, multi_batch_tuple in enumerate(self.val_loaders):
# create a dictionnary (domain => batch) from tuple
# (batch_domain_0, ..., batch_domain_i)
# and send it to self.device
nb_of_batches = i + 1
multi_domain_batch = {
batch["domain"][0]: self.batch_to_device(batch)
for batch in multi_batch_tuple
}
self.get_G_loss(multi_domain_batch, verbose)
if val_logger is None:
val_logger = deepcopy(self.logger.losses.generator)
else:
val_logger = sum_dict(val_logger, self.logger.losses.generator)
val_logger = div_dict(val_logger, nb_of_batches)
self.logger.losses.generator = val_logger
self.logger.log_losses(model_to_update="G", mode="val")
for d in self.opts.domains:
self.logger.log_comet_images("train", d)
self.logger.log_comet_images("val", d)
if "m" in self.opts.tasks and self.has_painter and not self.kitti_pretrain:
self.logger.log_comet_combined_images("train", "r")
self.logger.log_comet_combined_images("val", "r")
if self.exp is not None:
print()
if "m" in self.opts.tasks or "s" in self.opts.tasks:
self.eval_images("val", "r")
self.eval_images("val", "s")
if "p" in self.opts.tasks and not self.kitti_pretrain:
val_fid = compute_val_fid(self)
if self.exp is not None:
self.exp.log_metric("val_fid", val_fid, step=self.logger.global_step)
else:
print("Validation FID Score", val_fid)
self.train_mode()
timing = int(time() - start_time)
print("****************** Done in {}s *********************".format(timing))
def eval_images(self, mode, domain):
if domain == "s" and self.kitti_pretrain:
domain = "kitti"
if domain == "rf" or domain not in self.display_images[mode]:
return
metric_funcs = {"accuracy": accuracy, "mIOU": mIOU}
metric_avg_scores = {"m": {}}
if "s" in self.opts.tasks:
metric_avg_scores["s"] = {}
if "d" in self.opts.tasks and domain == "s" and self.opts.gen.d.classify.enable:
metric_avg_scores["d"] = {}
for key in metric_funcs:
for task in metric_avg_scores:
metric_avg_scores[task][key] = []
for im_set in self.display_images[mode][domain]:
x = im_set["data"]["x"].unsqueeze(0).to(self.device)
z = self.G.encode(x)
s_pred = d_pred = z_depth = None
if "d" in metric_avg_scores:
d_pred, z_depth = self.G.decoders["d"](z)
d_pred = d_pred.detach().cpu()
if domain == "s":
d = im_set["data"]["d"].unsqueeze(0).detach()
for metric in metric_funcs:
metric_score = metric_funcs[metric](d_pred, d)
metric_avg_scores["d"][metric].append(metric_score)
if "s" in metric_avg_scores:
if z_depth is None:
if self.opts.gen.s.use_dada and "d" in self.opts.tasks:
_, z_depth = self.G.decoders["d"](z)
s_pred = self.G.decoders["s"](z, z_depth).detach().cpu()
s = im_set["data"]["s"].unsqueeze(0).detach()
for metric in metric_funcs:
metric_score = metric_funcs[metric](s_pred, s)
metric_avg_scores["s"][metric].append(metric_score)
if "m" in self.opts:
cond = None
if s_pred is not None and d_pred is not None:
cond = self.G.make_m_cond(d_pred, s_pred, x)
if z_depth is None:
if self.opts.gen.m.use_dada and "d" in self.opts.tasks:
_, z_depth = self.G.decoders["d"](z)
pred_mask = (
(self.G.mask(z=z, cond=cond, z_depth=z_depth)).detach().cpu()
)
pred_mask = (pred_mask > 0.5).to(torch.float32)
pred_prob = torch.cat([1 - pred_mask, pred_mask], dim=1)
m = im_set["data"]["m"].unsqueeze(0).detach()
for metric in metric_funcs:
if metric != "mIOU":
metric_score = metric_funcs[metric](pred_mask, m)
else:
metric_score = metric_funcs[metric](pred_prob, m)
metric_avg_scores["m"][metric].append(metric_score)
metric_avg_scores = {
task: {
metric: np.mean(values) if values else float("nan")
for metric, values in met_dict.items()
}
for task, met_dict in metric_avg_scores.items()
}
metric_avg_scores = {
task: {
metric: value if not np.isnan(value) else -1
for metric, value in met_dict.items()
}
for task, met_dict in metric_avg_scores.items()
}
if self.exp is not None:
self.exp.log_metrics(
flatten_opts(metric_avg_scores),
prefix=f"metrics_{mode}_{domain}",
step=self.logger.global_step,
)
else:
print(f"metrics_{mode}_{domain}")
print(flatten_opts(metric_avg_scores))
return 0
def functional_test_mode(self):
import atexit
self.opts.output_path = (
Path("~").expanduser() / "climategan" / "functional_tests"
)
Path(self.opts.output_path).mkdir(parents=True, exist_ok=True)
with open(Path(self.opts.output_path) / "is_functional.test", "w") as f:
f.write("trainer functional test - delete this dir")
if self.exp is not None:
self.exp.log_parameter("is_functional_test", True)
atexit.register(self.del_output_path)
def del_output_path(self, force=False):
import shutil
if not Path(self.opts.output_path).exists():
return
if (Path(self.opts.output_path) / "is_functional.test").exists() or force:
shutil.rmtree(self.opts.output_path)
def compute_fire(self, x, seg_preds=None, z=None, z_depth=None):
"""
Transforms input tensor given wildfires event
Args:
x (torch.Tensor): Input tensor
seg_preds (torch.Tensor): Semantic segmentation
predictions for input tensor
z (torch.Tensor): Latent vector of encoded "x".
Can be None if seg_preds is given.
Returns:
torch.Tensor: Wildfire version of input tensor
"""
if seg_preds is None:
if z is None:
z = self.G.encode(x)
seg_preds = self.G.decoders["s"](z, z_depth)
return add_fire(x, seg_preds, self.opts.events.fire)
def compute_flood(
self, x, z=None, z_depth=None, m=None, s=None, cloudy=None, bin_value=-1
):
"""
Applies a flood (mask + paint) to an input image, with optionally
pre-computed masker z or mask
Args:
x (torch.Tensor): B x C x H x W -1:1 input image
z (torch.Tensor, optional): B x C x H x W Masker latent vector.
Defaults to None.
m (torch.Tensor, optional): B x 1 x H x W Mask. Defaults to None.
bin_value (float, optional): Mask binarization value.
Set to -1 to use smooth masks (no binarization)
Returns:
torch.Tensor: B x 3 x H x W -1:1 flooded image
"""
if m is None:
if z is None:
z = self.G.encode(x)
if "d" in self.opts.tasks and self.opts.gen.m.use_dada and z_depth is None:
_, z_depth = self.G.decoders["d"](z)
m = self.G.mask(x=x, z=z, z_depth=z_depth)
if bin_value >= 0:
m = (m > bin_value).to(m.dtype)
if cloudy:
assert s is not None
return self.G.paint_cloudy(m, x, s)
return self.G.paint(m, x)
def compute_smog(self, x, z=None, d=None, s=None, use_sky_seg=False):
# implementation from the paper:
# HazeRD: An outdoor scene dataset and benchmark for single image dehazing
sky_mask = None
if d is None or (use_sky_seg and s is None):
if z is None:
z = self.G.encode(x)
if d is None:
d, _ = self.G.decoders["d"](z)
if use_sky_seg and s is None:
if "s" not in self.opts.tasks:
raise ValueError(
"Cannot have "
+ "(use_sky_seg is True and s is None and 's' not in tasks)"
)
s = self.G.decoders["s"](z)
# TODO: s to sky mask
# TODO: interpolate to d's size
params = self.opts.events.smog
airlight = params.airlight * torch.ones(3)
airlight = airlight.view(1, -1, 1, 1).to(self.device)
irradiance = srgb2lrgb(x)
beta = torch.tensor([params.beta / params.vr] * 3)
beta = beta.view(1, -1, 1, 1).to(self.device)
d = normalize(d, mini=0.3, maxi=1.0)
d = 1.0 / d
d = normalize(d, mini=0.1, maxi=1)
if sky_mask is not None:
d[sky_mask] = 1
d = torch.nn.functional.interpolate(
d, size=x.shape[-2:], mode="bilinear", align_corners=True
)
d = d.repeat(1, 3, 1, 1)
transmission = torch.exp(d * -beta)
smogged = transmission * irradiance + (1 - transmission) * airlight
smogged = lrgb2srgb(smogged)
# add yellow filter
alpha = params.alpha / 255
yellow_mask = torch.Tensor([params.yellow_color]) / 255
yellow_filter = (
yellow_mask.unsqueeze(2)
.unsqueeze(2)
.repeat(1, 1, smogged.shape[-2], smogged.shape[-1])
.to(self.device)
)
smogged = smogged * (1 - alpha) + yellow_filter * alpha
return smogged
|