File size: 31,401 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
"""All non-tensor utils
"""
import contextlib
import datetime
import json
import os
import re
import shutil
import subprocess
import time
import traceback
from os.path import expandvars
from pathlib import Path
from typing import Any, List, Optional, Union
from uuid import uuid4

import numpy as np
import torch
import yaml
from addict import Dict
from comet_ml import Experiment

comet_kwargs = {
    "auto_metric_logging": False,
    "parse_args": True,
    "log_env_gpu": True,
    "log_env_cpu": True,
    "display_summary_level": 0,
}

IMG_EXTENSIONS = set(
    [".jpg", ".JPG", ".jpeg", ".JPEG", ".png", ".PNG", ".ppm", ".PPM", ".bmp", ".BMP"]
)


def resolve(path):
    """
    fully resolve a path:
    resolve env vars ($HOME etc.) -> expand user (~) -> make absolute

    Returns:
        pathlib.Path: resolved absolute path
    """
    return Path(expandvars(str(path))).expanduser().resolve()


def copy_run_files(opts: Dict) -> None:
    """
    Copy the opts's sbatch_file to output_path

    Args:
        opts (addict.Dict): options
    """
    if opts.sbatch_file:
        p = resolve(opts.sbatch_file)
        if p.exists():
            o = resolve(opts.output_path)
            if o.exists():
                shutil.copyfile(p, o / p.name)
    if opts.exp_file:
        p = resolve(opts.exp_file)
        if p.exists():
            o = resolve(opts.output_path)
            if o.exists():
                shutil.copyfile(p, o / p.name)


def merge(
    source: Union[dict, Dict], destination: Union[dict, Dict]
) -> Union[dict, Dict]:
    """
    run me with nosetests --with-doctest file.py
    >>> a = { 'first' : { 'all_rows' : { 'pass' : 'dog', 'number' : '1' } } }
    >>> b = { 'first' : { 'all_rows' : { 'fail' : 'cat', 'number' : '5' } } }
    >>> merge(b, a) == {
        'first' : {
            'all_rows' : { '
                pass' : 'dog',
                'fail' : 'cat',
                'number' : '5'
            }
        }
    }
    True
    """
    for key, value in source.items():
        try:
            if isinstance(value, dict):
                # get node or create one
                node = destination.setdefault(key, {})
                merge(value, node)
            else:
                if isinstance(destination, dict):
                    destination[key] = value
                else:
                    destination = {key: value}
        except TypeError as e:
            print(traceback.format_exc())
            print(">>>", source)
            print(">>>", destination)
            print(">>>", key)
            print(">>>", value)
            raise Exception(e)

    return destination


def load_opts(
    path: Optional[Union[str, Path]] = None,
    default: Optional[Union[str, Path, dict, Dict]] = None,
    commandline_opts: Optional[Union[Dict, dict]] = None,
) -> Dict:
    """Loadsize a configuration Dict from 2 files:
    1. default files with shared values across runs and users
    2. an overriding file with run- and user-specific values

    Args:
        path (pathlib.Path): where to find the overriding configuration
            default (pathlib.Path, optional): Where to find the default opts.
            Defaults to None. In which case it is assumed to be a default config
            which needs processing such as setting default values for lambdas and gen
            fields

    Returns:
        addict.Dict: options dictionnary, with overwritten default values
    """

    if path is None and default is None:
        path = (
            resolve(Path(__file__)).parent.parent
            / "shared"
            / "trainer"
            / "defaults.yaml"
        )

    if path:
        path = resolve(path)

    if default is None:
        default_opts = {}
    else:
        if isinstance(default, (str, Path)):
            with open(default, "r") as f:
                default_opts = yaml.safe_load(f)
        else:
            default_opts = dict(default)

    if path is None:
        overriding_opts = {}
    else:
        with open(path, "r") as f:
            overriding_opts = yaml.safe_load(f) or {}

    opts = Dict(merge(overriding_opts, default_opts))

    if commandline_opts is not None and isinstance(commandline_opts, dict):
        opts = Dict(merge(commandline_opts, opts))

    if opts.train.kitti.pretrained:
        assert "kitti" in opts.data.files.train
        assert "kitti" in opts.data.files.val
        assert opts.train.kitti.epochs > 0

    opts.domains = []
    if "m" in opts.tasks or "s" in opts.tasks or "d" in opts.tasks:
        opts.domains.extend(["r", "s"])
    if "p" in opts.tasks:
        opts.domains.append("rf")
    if opts.train.kitti.pretrain:
        opts.domains.append("kitti")

    opts.domains = list(set(opts.domains))

    if "s" in opts.tasks:
        if opts.gen.encoder.architecture != opts.gen.s.architecture:
            print(
                "WARNING: segmentation encoder and decoder architectures do not match"
            )
            print(
                "Encoder: {} <> Decoder: {}".format(
                    opts.gen.encoder.architecture, opts.gen.s.architecture
                )
            )
    if opts.gen.m.use_spade:
        if "d" not in opts.tasks or "s" not in opts.tasks:
            raise ValueError(
                "opts.gen.m.use_spade is True so tasks MUST include"
                + "both d and s, but received {}".format(opts.tasks)
            )
        if opts.gen.d.classify.enable:
            raise ValueError(
                "opts.gen.m.use_spade is True but using D as a classifier"
                + " which is a non-implemented combination"
            )

    if opts.gen.s.depth_feat_fusion is True or opts.gen.s.depth_dada_fusion is True:
        opts.gen.s.use_dada = True

    events_path = (
        resolve(Path(__file__)).parent.parent / "shared" / "trainer" / "events.yaml"
    )
    if events_path.exists():
        with events_path.open("r") as f:
            events_dict = yaml.safe_load(f)
        events_dict = Dict(events_dict)
        opts.events = events_dict

    return set_data_paths(opts)


def set_data_paths(opts: Dict) -> Dict:
    """Update the data files paths in data.files.train and data.files.val
    from data.files.base

    Args:
        opts (addict.Dict): options

    Returns:
        addict.Dict: updated options
    """

    for mode in ["train", "val"]:
        for domain in opts.data.files[mode]:
            if opts.data.files.base and not opts.data.files[mode][domain].startswith(
                "/"
            ):
                opts.data.files[mode][domain] = str(
                    Path(opts.data.files.base) / opts.data.files[mode][domain]
                )
            assert Path(
                opts.data.files[mode][domain]
            ).exists(), "Cannot find {}".format(str(opts.data.files[mode][domain]))

    return opts


def load_test_opts(test_file_path: str = "config/trainer/local_tests.yaml") -> Dict:
    """Returns the special opts set up for local tests
    Args:
        test_file_path (str, optional): Name of the file located in config/
            Defaults to "local_tests.yaml".

    Returns:
        addict.Dict: Opts loaded from defaults.yaml and updated from test_file_path
    """
    return load_opts(
        Path(__file__).parent.parent / f"{test_file_path}",
        default=Path(__file__).parent.parent / "shared/trainer/defaults.yaml",
    )


def get_git_revision_hash() -> str:
    """Get current git hash the code is run from

    Returns:
        str: git hash
    """
    try:
        return subprocess.check_output(["git", "rev-parse", "HEAD"]).decode().strip()
    except Exception as e:
        return str(e)


def get_git_branch() -> str:
    """Get current git branch name

    Returns:
        str: git branch name
    """
    try:
        return (
            subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"])
            .decode()
            .strip()
        )
    except Exception as e:
        return str(e)


def kill_job(id: Union[int, str]) -> None:
    subprocess.check_output(["scancel", str(id)])


def write_hash(path: Union[str, Path]) -> None:
    hash_code = get_git_revision_hash()
    with open(path, "w") as f:
        f.write(hash_code)


def shortuid():
    return str(uuid4()).split("-")[0]


def datenowshort():
    """
    >>> a = str(datetime.datetime.now())
    >>> print(a)
    '2021-02-25 11:34:50.188072'
    >>> print(a[5:].split(".")[0].replace(" ", "_"))
    '02-25_11:35:41'

    Returns:
        str: month-day_h:m:s
    """
    return str(datetime.datetime.now())[5:].split(".")[0].replace(" ", "_")


def get_increased_path(path: Union[str, Path], use_date: bool = False) -> Path:
    """Returns an increased path: if dir exists, returns `dir (1)`.
    If `dir (i)` exists, returns `dir (max(i) + 1)`

    get_increased_path("test").mkdir() creates `test/`
    then
    get_increased_path("test").mkdir() creates `test (1)/`
    etc.
    if `test (3)/` exists but not `test (2)/`, `test (4)/` is created so that indexes
    always increase

    Args:
        path (str or pathlib.Path): the file/directory which may already exist and would
            need to be increased

    Returns:
        pathlib.Path: increased path
    """
    fp = resolve(path)
    if not fp.exists():
        return fp

    if fp.is_file():
        if not use_date:
            while fp.exists():
                fp = fp.parent / f"{fp.stem}--{shortuid()}{fp.suffix}"
            return fp
        else:
            while fp.exists():
                time.sleep(0.5)
                fp = fp.parent / f"{fp.stem}--{datenowshort()}{fp.suffix}"
            return fp

    if not use_date:
        while fp.exists():
            fp = fp.parent / f"{fp.name}--{shortuid()}"
        return fp
    else:
        while fp.exists():
            time.sleep(0.5)
            fp = fp.parent / f"{fp.name}--{datenowshort()}"
        return fp

    # vals = []
    # for n in fp.parent.glob("{}*".format(fp.stem)):
    #     if re.match(r".+\(\d+\)", str(n.name)) is not None:
    #         name = str(n.name)
    #         start = name.index("(")
    #         end = name.index(")")
    #         vals.append(int(name[start + 1 : end]))
    # if vals:
    #     ext = " ({})".format(max(vals) + 1)
    # elif fp.exists():
    #     ext = " (1)"
    # else:
    #     ext = ""
    # return fp.parent / (fp.stem + ext + fp.suffix)


def env_to_path(path: str) -> str:
    """Transorms an environment variable mention in a json
    into its actual value. E.g. $HOME/clouds -> /home/vsch/clouds

    Args:
        path (str): path potentially containing the env variable

    """
    path_elements = path.split("/")
    new_path = []
    for el in path_elements:
        if "$" in el:
            new_path.append(os.environ[el.replace("$", "")])
        else:
            new_path.append(el)
    return "/".join(new_path)


def flatten_opts(opts: Dict) -> dict:
    """Flattens a multi-level addict.Dict or native dictionnary into a single
    level native dict with string keys representing the keys sequence to reach
    a value in the original argument.

    d = addict.Dict()
    d.a.b.c = 2
    d.a.b.d = 3
    d.a.e = 4
    d.f = 5
    flatten_opts(d)
    >>> {
        "a.b.c": 2,
        "a.b.d": 3,
        "a.e": 4,
        "f": 5,
    }

    Args:
        opts (addict.Dict or dict): addict dictionnary to flatten

    Returns:
        dict: flattened dictionnary
    """
    values_list = []

    def p(d, prefix="", vals=[]):
        for k, v in d.items():
            if isinstance(v, (Dict, dict)):
                p(v, prefix + k + ".", vals)
            elif isinstance(v, list):
                if v and isinstance(v[0], (Dict, dict)):
                    for i, m in enumerate(v):
                        p(m, prefix + k + "." + str(i) + ".", vals)
                else:
                    vals.append((prefix + k, str(v)))
            else:
                if isinstance(v, Path):
                    v = str(v)
                vals.append((prefix + k, v))

    p(opts, vals=values_list)
    return dict(values_list)


def get_comet_rest_api_key(
    path_to_config_file: Optional[Union[str, Path]] = None
) -> str:
    """Gets a comet.ml rest_api_key in the following order:
    * config file specified as argument
    * environment variable
    * .comet.config file in the current working diretory
    * .comet.config file in your home

    config files must have a line like `rest_api_key=<some api key>`

    Args:
        path_to_config_file (str or pathlib.Path, optional): config_file to use.
            Defaults to None.

    Raises:
        ValueError: can't find a file
        ValueError: can't find the key in a file

    Returns:
        str: your comet rest_api_key
    """
    if "COMET_REST_API_KEY" in os.environ and path_to_config_file is None:
        return os.environ["COMET_REST_API_KEY"]
    if path_to_config_file is not None:
        p = resolve(path_to_config_file)
    else:
        p = Path() / ".comet.config"
        if not p.exists():
            p = Path.home() / ".comet.config"
            if not p.exists():
                raise ValueError("Unable to find your COMET_REST_API_KEY")
    with p.open("r") as f:
        for keys in f:
            if "rest_api_key" in keys:
                return keys.strip().split("=")[-1].strip()
    raise ValueError("Unable to find your COMET_REST_API_KEY in {}".format(str(p)))


def get_files(dirName: str) -> list:
    # create a list of file and sub directories
    files = sorted(os.listdir(dirName))
    all_files = list()
    for entry in files:
        fullPath = os.path.join(dirName, entry)
        if os.path.isdir(fullPath):
            all_files = all_files + get_files(fullPath)
        else:
            all_files.append(fullPath)

    return all_files


def make_json_file(
    tasks: List[str],
    addresses: List[str],  # for windows user, use "\\" instead of using "/"
    json_names: List[str] = ["train_jsonfile.json", "val_jsonfile.json"],
    splitter: str = "/",
    pourcentage_val: float = 0.15,
) -> None:
    """
        How to use it?
    e.g.
    make_json_file(['x','m','d'], [
    '/network/tmp1/ccai/data/munit_dataset/trainA_size_1200/',
    '/network/tmp1/ccai/data/munit_dataset/seg_trainA_size_1200/',
    '/network/tmp1/ccai/data/munit_dataset/trainA_megadepth_resized/'
    ], ["train_r.json", "val_r.json"])

    Args:
        tasks (list): the list of image type like 'x', 'm', 'd', etc.
        addresses (list): the list of the corresponding address of the
            image type mentioned in tasks
        json_names (list): names for the json files, train being first
            (e.g. : ["train_r.json", "val_r.json"])
        splitter (str, optional): The path separator for the current OS.
            Defaults to '/'.
        pourcentage_val: pourcentage of files to go in validation set
    """
    assert len(tasks) == len(addresses), "keys and addresses must have the same length!"

    files = [get_files(addresses[j]) for j in range(len(tasks))]
    n_files_val = int(pourcentage_val * len(files[0]))
    n_files_train = len(files[0]) - n_files_val
    filenames = [files[0][:n_files_train], files[0][-n_files_val:]]

    file_address_map = {
        tasks[j]: {
            ".".join(file.split(splitter)[-1].split(".")[:-1]): file
            for file in files[j]
        }
        for j in range(len(tasks))
    }
    # The tasks of the file_address_map are like 'x', 'm', 'd'...
    # The values of the file_address_map are a dictionary whose tasks are the
    # filenames without extension whose values are the path of the filename
    # e.g. file_address_map =
    # {'x': {'A': 'path/to/trainA_size_1200/A.png', ...},
    #  'm': {'A': 'path/to/seg_trainA_size_1200/A.jpg',...}
    #  'd': {'A': 'path/to/trainA_megadepth_resized/A.bmp',...}
    # ...}

    for i, json_name in enumerate(json_names):
        dicts = []
        for j in range(len(filenames[i])):
            file = filenames[i][j]
            filename = file.split(splitter)[-1]  # the filename with 'x' extension
            filename_ = ".".join(
                filename.split(".")[:-1]
            )  # the filename without extension
            tmp_dict = {}
            for k in range(len(tasks)):
                tmp_dict[tasks[k]] = file_address_map[tasks[k]][filename_]
            dicts.append(tmp_dict)
        with open(json_name, "w", encoding="utf-8") as outfile:
            json.dump(dicts, outfile, ensure_ascii=False)


def append_task_to_json(
    path_to_json: Union[str, Path],
    path_to_new_json: Union[str, Path],
    path_to_new_images_dir: Union[str, Path],
    new_task_name: str,
):
    """Add all files for a task to an existing json file by creating a new json file
    in the specified path.
    Assumes that the files for the new task have exactly the same names as the ones
    for the other tasks

    Args:
        path_to_json: complete path to the json file to modify
        path_to_new_json: complete path to the new json file to be created
        path_to_new_images_dir: complete path of the directory where to find the
            images for the new task
        new_task_name: name of the new task

    e.g:
        append_json(
            "/network/tmp1/ccai/data/climategan/seg/train_r.json",
            "/network/tmp1/ccai/data/climategan/seg/train_r_new.json"
            "/network/tmp1/ccai/data/munit_dataset/trainA_seg_HRNet/unity_labels",
            "s",
        )
    """
    ims_list = None
    if path_to_json:
        path_to_json = Path(path_to_json).resolve()
        with open(path_to_json, "r") as f:
            ims_list = json.load(f)

    files = get_files(path_to_new_images_dir)

    if ims_list is None:
        raise ValueError(f"Could not find the list in {path_to_json}")

    new_ims_list = [None] * len(ims_list)
    for i, im_dict in enumerate(ims_list):
        new_ims_list[i] = {}
        for task, path in im_dict.items():
            new_ims_list[i][task] = path

    for i, im_dict in enumerate(ims_list):
        for task, path in im_dict.items():
            file_name = os.path.splitext(path)[0]  # removes extension
            file_name = file_name.rsplit("/", 1)[-1]  # only the file_name
            file_found = False
            for file_path in files:
                if file_name in file_path:
                    file_found = True
                    new_ims_list[i][new_task_name] = file_path
                    break
            if file_found:
                break
            else:
                print("Error! File ", file_name, "not found in directory!")
                return

    with open(path_to_new_json, "w", encoding="utf-8") as f:
        json.dump(new_ims_list, f, ensure_ascii=False)


def sum_dict(dict1: Union[dict, Dict], dict2: Union[Dict, dict]) -> Union[dict, Dict]:
    """Add dict2 into dict1"""
    for k, v in dict2.items():
        if not isinstance(v, dict):
            dict1[k] += v
        else:
            sum_dict(dict1[k], dict2[k])
    return dict1


def div_dict(dict1: Union[dict, Dict], div_by: float) -> dict:
    """Divide elements of dict1 by div_by"""
    for k, v in dict1.items():
        if not isinstance(v, dict):
            dict1[k] /= div_by
        else:
            div_dict(dict1[k], div_by)
    return dict1


def comet_id_from_url(url: str) -> Optional[str]:
    """
    Get comet exp id from its url:
    https://www.comet.ml/vict0rsch/climategan/2a1a4a96afe848218c58ac4e47c5375f
    -> 2a1a4a96afe848218c58ac4e47c5375f

    Args:
        url (str): comet exp url

    Returns:
        str: comet exp id
    """
    try:
        ids = url.split("/")
        ids = [i for i in ids if i]
        return ids[-1]
    except Exception:
        return None


@contextlib.contextmanager
def temp_np_seed(seed: Optional[int]) -> None:
    """
    Set temporary numpy seed:
    with temp_np_seed(123):
        np.random.permutation(3)

    Args:
        seed (int): temporary numpy seed
    """
    state = np.random.get_state()
    np.random.seed(seed)
    try:
        yield
    finally:
        np.random.set_state(state)


def get_display_indices(opts: Dict, domain: str, length: int) -> list:
    """
    Compute the index of images to use for comet logging:
    if opts.comet.display_indices is an int, and domain is real:
        return range(int)
    if opts.comet.display_indices is an int, and domain is sim:
        return permutation(length)[:int]
    if opts.comet.display_indices is a list:
        return list

    otherwise return []


    Args:
        opts (addict.Dict): options
        domain (str): domain for those indices
        length (int): length of dataset for the permutation

    Returns:
        list(int): The indices to display
    """
    if domain == "rf":
        dsize = max([opts.comet.display_size, opts.train.fid.get("n_images", 0)])
    else:
        dsize = opts.comet.display_size
    if dsize > length:
        print(
            f"Warning: dataset is smaller ({length} images) "
            + f"than required display indices ({dsize})."
            + f" Selecting {length} images."
        )

    display_indices = []
    assert isinstance(dsize, (int, list)), "Unknown display size {}".format(dsize)
    if isinstance(dsize, int):
        assert dsize >= 0, "Display size cannot be < 0"
        with temp_np_seed(123):
            display_indices = list(np.random.permutation(length)[:dsize])
    elif isinstance(dsize, list):
        display_indices = dsize

    if not display_indices:
        print("Warning: no display indices (utils.get_display_indices)")

    return display_indices


def get_latest_path(path: Union[str, Path]) -> Path:
    """
    Get the file/dir with largest increment i as `file (i).ext`

    Args:
        path (str or pathlib.Path): base pattern

    Returns:
        Path: path found
    """
    p = Path(path).resolve()
    s = p.stem
    e = p.suffix
    files = list(p.parent.glob(f"{s}*(*){e}"))
    indices = list(p.parent.glob(f"{s}*(*){e}"))
    indices = list(map(lambda f: f.name, indices))
    indices = list(map(lambda x: re.findall(r"\((.*?)\)", x)[-1], indices))
    indices = list(map(int, indices))
    if not indices:
        f = p
    else:
        f = files[np.argmax(indices)]
    return f


def get_existing_jobID(output_path: Path) -> str:
    """
    If the opts in output_path have a jobID, return it. Else, return None

    Args:
        output_path (pathlib.Path | str): where to  look

    Returns:
        str | None: jobid
    """
    op = Path(output_path)
    if not op.exists():
        return

    opts_path = get_latest_path(op / "opts.yaml")

    if not opts_path.exists():
        return

    with opts_path.open("r") as f:
        opts = yaml.safe_load(f)

    jobID = opts.get("jobID", None)

    return jobID


def find_existing_training(opts: Dict) -> Optional[Path]:
    """
    Looks in all directories like output_path.parent.glob(output_path.name*)
    and compares the logged slurm job id with the current opts.jobID

    If a match is found, the training should automatically continue in the
    matching output directory

    If no match is found, this is a new job and it should have a new output path

    Args:
        opts (Dict): trainer's options

    Returns:
        Optional[Path]: a path if a matchin jobID is found, None otherwise
    """
    if opts.jobID is None:
        print("WARNING: current JOBID is None")
        return

    print("---------- Current job id:", opts.jobID)

    path = Path(opts.output_path).resolve()
    parent = path.parent
    name = path.name

    try:
        similar_dirs = [p.resolve() for p in parent.glob(f"{name}*") if p.is_dir()]

        for sd in similar_dirs:
            candidate_jobID = get_existing_jobID(sd)
            if candidate_jobID is not None and str(opts.jobID) == str(candidate_jobID):
                print(f"Found matching job id in {sd}\n")
                return sd
        print("Did not find a matching job id in \n {}\n".format(str(similar_dirs)))
    except Exception as e:
        print("ERROR: Could not resume (find_existing_training)", e)


def pprint(*args: List[Any]):
    """
    Prints *args within a box of "=" characters
    """
    txt = " ".join(map(str, args))
    col = "====="
    space = "   "
    head_size = 2
    header = "\n".join(["=" * (len(txt) + 2 * (len(col) + len(space)))] * head_size)
    empty = "{}{}{}{}{}".format(col, space, " " * (len(txt)), space, col)
    print()
    print(header)
    print(empty)
    print("{}{}{}{}{}".format(col, space, txt, space, col))
    print(empty)
    print(header)
    print()


def get_existing_comet_id(path: str) -> Optional[str]:
    """
    Returns the id of the existing comet experiment stored in path

    Args:
        path (str): Output pat where to look for the comet exp

    Returns:
        Optional[str]: comet exp's ID if any was found
    """
    comet_previous_path = get_latest_path(Path(path) / "comet_url.txt")
    if comet_previous_path.exists():
        with comet_previous_path.open("r") as f:
            url = f.read().strip()
            return comet_id_from_url(url)


def get_latest_opts(path):
    """
    get latest opts dumped in path if they look like *opts*.yaml
    and were increased as
    opts.yaml < opts (1).yaml < opts (2).yaml etc.

    Args:
        path (str or pathlib.Path): where to look for opts

    Raises:
        ValueError: If no match for *opts*.yaml is found

    Returns:
        addict.Dict: loaded opts
    """
    path = Path(path)
    opts = get_latest_path(path / "opts.yaml")
    assert opts.exists()
    with opts.open("r") as f:
        opts = Dict(yaml.safe_load(f))

    events_path = Path(__file__).parent.parent / "shared" / "trainer" / "events.yaml"
    if events_path.exists():
        with events_path.open("r") as f:
            events_dict = yaml.safe_load(f)
        events_dict = Dict(events_dict)
        opts.events = events_dict

    return opts


def text_to_array(text, width=640, height=40):
    """
    Creates a numpy array of shape height x width x 3 with
    text written on it using PIL

    Args:
        text (str): text to write
        width (int, optional): Width of the resulting array. Defaults to 640.
        height (int, optional): Height of the resulting array. Defaults to 40.

    Returns:
        np.ndarray: Centered text
    """
    from PIL import Image, ImageDraw, ImageFont

    img = Image.new("RGB", (width, height), (255, 255, 255))
    try:
        font = ImageFont.truetype("UnBatang.ttf", 25)
    except OSError:
        font = ImageFont.load_default()

    d = ImageDraw.Draw(img)
    text_width, text_height = d.textsize(text)
    h = 40 // 2 - 3 * text_height // 2
    w = width // 2 - text_width
    d.text((w, h), text, font=font, fill=(30, 30, 30))
    return np.array(img)


def all_texts_to_array(texts, width=640, height=40):
    """
    Creates an array of texts, each of height and width specified
    by the args, concatenated along their width dimension

    Args:
        texts (list(str)): List of texts to concatenate
        width (int, optional): Individual text's width. Defaults to 640.
        height (int, optional): Individual text's height. Defaults to 40.

    Returns:
        list: len(texts) text arrays with dims height x width x 3
    """
    return [text_to_array(text, width, height) for text in texts]


class Timer:
    def __init__(self, name="", store=None, precision=3, ignore=False, cuda=True):
        self.name = name
        self.store = store
        self.precision = precision
        self.ignore = ignore
        self.cuda = cuda

        if cuda:
            self._start_event = torch.cuda.Event(enable_timing=True)
            self._end_event = torch.cuda.Event(enable_timing=True)

    def format(self, n):
        return f"{n:.{self.precision}f}"

    def __enter__(self):
        """Start a new timer as a context manager"""
        if self.cuda:
            self._start_event.record()
        else:
            self._start_time = time.perf_counter()
        return self

    def __exit__(self, *exc_info):
        """Stop the context manager timer"""
        if self.ignore:
            return

        if self.cuda:
            self._end_event.record()
            torch.cuda.synchronize()
            new_time = self._start_event.elapsed_time(self._end_event) / 1000
        else:
            t = time.perf_counter()
            new_time = t - self._start_time

        if self.store is not None:
            assert isinstance(self.store, list)
            self.store.append(new_time)
        if self.name:
            print(f"[{self.name}] Elapsed time: {self.format(new_time)}")


def get_loader_output_shape_from_opts(opts):
    transforms = opts.data.transforms

    t = None
    for t in transforms[::-1]:
        if t.name == "resize":
            break
    assert t is not None

    if isinstance(t.new_size, Dict):
        return {
            task: (
                t.new_size.get(task, t.new_size.default),
                t.new_size.get(task, t.new_size.default),
            )
            for task in opts.tasks + ["x"]
        }
    assert isinstance(t.new_size, int)
    new_size = (t.new_size, t.new_size)
    return {task: new_size for task in opts.tasks + ["x"]}


def find_target_size(opts, task):
    target_size = None
    if isinstance(opts.data.transforms[-1].new_size, int):
        target_size = opts.data.transforms[-1].new_size
    else:
        if task in opts.data.transforms[-1].new_size:
            target_size = opts.data.transforms[-1].new_size[task]
        else:
            assert "default" in opts.data.transforms[-1].new_size
            target_size = opts.data.transforms[-1].new_size["default"]

    return target_size


def to_128(im, w_target=-1):
    h, w = im.shape[:2]
    aspect_ratio = h / w
    if w_target < 0:
        w_target = w

    nw = int(w_target / 128) * 128
    nh = int(nw * aspect_ratio / 128) * 128

    return nh, nw


def is_image_file(filename):
    """Check that a file's name points to a known image format"""
    if isinstance(filename, Path):
        return filename.suffix in IMG_EXTENSIONS

    return Path(filename).suffix in IMG_EXTENSIONS


def find_images(path, recursive=False):
    """
    Get a list of all images contained in a directory:

    - path.glob("*") if not recursive
    - path.glob("**/*") if recursive
    """
    p = Path(path)
    assert p.exists()
    assert p.is_dir()
    pattern = "*"
    if recursive:
        pattern += "*/*"

    return [i for i in p.glob(pattern) if i.is_file() and is_image_file(i)]


def cols():
    try:
        col = os.get_terminal_size().columns
    except Exception:
        col = 50
    return col


def upload_images_to_exp(
    path, exp=None, project_name="climategan-eval", sleep=-1, verbose=0
):
    ims = find_images(path)
    end = None
    c = cols()
    if verbose == 1:
        end = "\r"
    if verbose > 1:
        end = "\n"
    if exp is None:
        exp = Experiment(project_name=project_name)
    for im in ims:
        exp.log_image(str(im))
        if verbose > 0:
            if verbose == 1:
                print(" " * (c - 1), end="\r", flush=True)
            print(str(im), end=end, flush=True)
        if sleep > 0:
            time.sleep(sleep)
    return exp