Spaces:
Runtime error
Runtime error
File size: 5,945 Bytes
ce190ee ae61fe0 cd31093 ce190ee ae61fe0 ce190ee ae61fe0 ce190ee ae61fe0 ce190ee ae61fe0 ce190ee fe58151 ae61fe0 9da944e ae61fe0 9da944e ae61fe0 ce190ee b75254c ae61fe0 ce190ee ae61fe0 9da944e ae61fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# based on https://huggingface.co/spaces/NimaBoscarino/climategan/blob/main/app.py # noqa: E501
# thank you @NimaBoscarino
import os
import gradio as gr
import googlemaps
from skimage import io
from urllib import parse
import numpy as np
from climategan_wrapper import ClimateGAN
def predict(cg: ClimateGAN, api_key):
def _predict(*args):
image = place = painter = None
if len(args) == 2:
image = args[0]
painter = args[1]
else:
assert len(args) == 3, "Unknown number of inputs {}".format(len(args))
image, place, painter = args
if api_key and place:
geocode_result = gmaps.geocode(place)
address = geocode_result[0]["formatted_address"]
static_map_url = f"https://maps.googleapis.com/maps/api/streetview?size=640x640&location={parse.quote(address)}&source=outdoor&key={api_key}"
img_np = io.imread(static_map_url)
else:
img_np = image
painters = {
"ClimateGAN Painter": "both",
"Stable Diffusion Painter": "stable_diffusion",
"Both": "climategan",
}
output_dict = cg.infer_single(img_np, painters[painter])
input_image = output_dict["input"]
masked_input = output_dict["masked_input"]
wildfire = output_dict["wildfire"]
smog = output_dict["smog"]
depth = np.repeat(output_dict["depth"][..., None], 3, axis=-1)
segmentation = output_dict["segmentation"]
climategan_flood = output_dict.get(
"climategan_flood",
np.ones(input_image.shape) * 255,
)
stable_flood = output_dict.get(
"stable_flood",
np.ones(input_image.shape) * 255,
)
stable_copy_flood = output_dict.get(
"stable_copy_flood",
np.ones(input_image.shape) * 255,
)
concat = output_dict.get(
"concat",
np.ones(input_image.shape) * 255,
)
return (
input_image,
masked_input,
segmentation,
depth,
climategan_flood,
stable_flood,
stable_copy_flood,
concat,
wildfire,
smog,
)
return _predict
if __name__ == "__main__":
api_key = os.environ.get("GMAPS_API_KEY")
gmaps = None
if api_key is not None:
gmaps = googlemaps.Client(key=api_key)
cg = ClimateGAN(
model_path="config/model/masker",
dev_mode=os.environ.get("CG_DEV_MODE", "false").lower() == "true",
)
cg._setup_stable_diffusion()
with gr.Blocks() as blocks:
with gr.Row():
with gr.Column():
gr.Markdown("# ClimateGAN: Visualize Climate Change")
gr.HTML(
'Climate change does not impact everyone equally. This Space shows the effects of the climate emergency, "one address at a time". Visit the original experience at <a href="https://thisclimatedoesnotexist.com/">ThisClimateDoesNotExist.com</a>.<br>Enter an address or place name, and ClimateGAN will generate images showing how the location could be impacted by flooding, wildfires, or smog.' # noqa: E501
)
with gr.Column():
gr.HTML(
"<p style='text-align: center'>This project is an unofficial clone of <a href='https://thisclimatedoesnotexist.com/'>ThisClimateDoesNotExist</a> | <a href='https://github.com/cc-ai/climategan'>ClimateGAN GitHub Repo</a></p>" # noqa: E501
)
with gr.Row():
gr.Markdown("## Inputs")
with gr.Row():
with gr.Column():
inputs = [gr.inputs.Image(label="Input Image")]
with gr.Column():
if api_key:
inputs += [gr.inputs.Textbox(label="Address or place name")]
inputs += [
gr.inputs.Dropdown(
choices=[
"ClimateGAN Painter",
"Stable Diffusion Painter",
"Both",
],
label="Choose Flood Painter",
default="Both",
)
]
btn = gr.Button("See for yourself!", label="Run")
with gr.Row():
gr.Markdown("## Outputs")
with gr.Row():
outputs = []
outputs.append(
gr.outputs.Image(type="numpy", label="Original image"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Masked input image"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Segmentation map"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Depth map"),
)
with gr.Row():
outputs.append(
gr.outputs.Image(type="numpy", label="ClimateGAN-Flooded image"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Stable Diffusion-Flooded image"),
)
outputs.append(
gr.outputs.Image(
type="numpy",
label="Stable Diffusion-Flooded image (restricted to masked area)",
)
),
with gr.Row():
outputs.append(
gr.outputs.Image(type="numpy", label="Comparison of previous images"),
)
with gr.Row():
outputs.append(
gr.outputs.Image(type="numpy", label="Wildfire"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Smog"),
)
btn.click(predict(cg, api_key), inputs=inputs, outputs=outputs)
blocks.launch()
|