File size: 71,547 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd31093
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd31093
 
ce190ee
 
cd31093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
"""
Main component: the trainer handles everything:
    * initializations
    * training
    * saving
"""
import inspect
import warnings
from copy import deepcopy
from pathlib import Path
from time import time

import numpy as np
from comet_ml import ExistingExperiment, Experiment

warnings.simplefilter("ignore", UserWarning)

import torch
import torch.nn as nn
from addict import Dict
from torch import autograd, sigmoid, softmax
from torch.cuda.amp import GradScaler, autocast
from tqdm import tqdm

from climategan.data import get_all_loaders
from climategan.discriminator import OmniDiscriminator, create_discriminator
from climategan.eval_metrics import accuracy, mIOU
from climategan.fid import compute_val_fid
from climategan.fire import add_fire
from climategan.generator import OmniGenerator, create_generator
from climategan.logger import Logger
from climategan.losses import get_losses
from climategan.optim import get_optimizer
from climategan.transforms import DiffTransforms
from climategan.tutils import (
    divide_pred,
    get_num_params,
    get_WGAN_gradient,
    lrgb2srgb,
    normalize,
    print_num_parameters,
    shuffle_batch_tuple,
    srgb2lrgb,
    vgg_preprocess,
    zero_grad,
)
from climategan.utils import (
    comet_kwargs,
    div_dict,
    find_target_size,
    flatten_opts,
    get_display_indices,
    get_existing_comet_id,
    get_latest_opts,
    merge,
    resolve,
    sum_dict,
    Timer,
)

try:
    import torch_xla.core.xla_model as xm  # type: ignore
except ImportError:
    pass


class Trainer:
    """Main trainer class"""

    def __init__(self, opts, comet_exp=None, verbose=0, device=None):
        """Trainer class to gather various model training procedures
        such as training evaluating saving and logging

        init:
        * creates an addict.Dict logger
        * creates logger.exp as a comet_exp experiment if `comet` arg is True
        * sets the device (1 GPU or CPU)

        Args:
            opts (addict.Dict): options to configure the trainer, the data, the models
            comet (bool, optional): whether to log the trainer with comet.ml.
                                    Defaults to False.
            verbose (int, optional): printing level to debug. Defaults to 0.
        """
        super().__init__()

        self.opts = opts
        self.verbose = verbose
        self.logger = Logger(self)

        self.losses = None
        self.G = self.D = None
        self.real_val_fid_stats = None
        self.use_pl4m = False
        self.is_setup = False
        self.loaders = self.all_loaders = None
        self.exp = None

        self.current_mode = "train"
        self.diff_transforms = None
        self.kitti_pretrain = self.opts.train.kitti.pretrain
        self.pseudo_training_tasks = set(self.opts.train.pseudo.tasks)

        self.lr_names = {}
        self.base_display_images = {}
        self.kitty_display_images = {}
        self.domain_labels = {"s": 0, "r": 1}

        self.device = device or torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu"
        )

        if isinstance(comet_exp, Experiment):
            self.exp = comet_exp

        if self.opts.train.amp:
            optimizers = [
                self.opts.gen.opt.optimizer.lower(),
                self.opts.dis.opt.optimizer.lower(),
            ]
            if "extraadam" in optimizers:
                raise ValueError(
                    "AMP does not work with ExtraAdam ({})".format(optimizers)
                )
            self.grad_scaler_d = GradScaler()
            self.grad_scaler_g = GradScaler()

        # -------------------------------
        # -----  Legacy Overwrites  -----
        # -------------------------------
        if (
            self.opts.gen.s.depth_feat_fusion is True
            or self.opts.gen.s.depth_dada_fusion is True
        ):
            self.opts.gen.s.use_dada = True

    @torch.no_grad()
    def paint_and_mask(self, image_batch, mask_batch=None, resolution="approx"):
        """
        Paints a batch of images (or a single image with a batch dim of 1). If
        masks are not provided, they are inferred from the masker.
        Resolution can either be the train-time resolution or the closest
        multiple of 2 ** spade_n_up

        Operations performed without gradient

        If resolution == "approx" then the output image has the shape:
            (dim // 2 ** spade_n_up) * 2 ** spade_n_up, for dim in [height, width]
            eg: (1000, 1300) => (896, 1280) for spade_n_up = 7
        If resolution == "exact" then the output image has the same shape:
            we first process in "approx" mode then upsample bilinear
        If resolution == "basic" image output shape is the train-time's
            (typically 640x640)
        If resolution == "upsample" image is inferred as "basic" and
            then upsampled to original size

        Args:
            image_batch (torch.Tensor): 4D batch of images to flood
            mask_batch (torch.Tensor, optional): Masks for the images.
                Defaults to None (infer with Masker).
            resolution (str, optional): "approx", "exact" or False

        Returns:
            torch.Tensor: N x C x H x W where H and W depend on `resolution`
        """
        assert resolution in {"approx", "exact", "basic", "upsample"}
        previous_mode = self.current_mode
        if previous_mode == "train":
            self.eval_mode()

        if mask_batch is None:
            mask_batch = self.G.mask(x=image_batch)
        else:
            assert len(image_batch) == len(mask_batch)
            assert image_batch.shape[-2:] == mask_batch.shape[-2:]

        if resolution not in {"approx", "exact"}:
            painted = self.G.paint(mask_batch, image_batch)

            if resolution == "upsample":
                painted = nn.functional.interpolate(
                    painted, size=image_batch.shape[-2:], mode="bilinear"
                )
        else:
            # save latent shape
            zh = self.G.painter.z_h
            zw = self.G.painter.z_w
            # adapt latent shape to approximately keep the resolution
            self.G.painter.z_h = (
                image_batch.shape[-2] // 2**self.opts.gen.p.spade_n_up
            )
            self.G.painter.z_w = (
                image_batch.shape[-1] // 2**self.opts.gen.p.spade_n_up
            )

            painted = self.G.paint(mask_batch, image_batch)

            self.G.painter.z_h = zh
            self.G.painter.z_w = zw
            if resolution == "exact":
                painted = nn.functional.interpolate(
                    painted, size=image_batch.shape[-2:], mode="bilinear"
                )

        if previous_mode == "train":
            self.train_mode()

        return painted

    def _p(self, *args, **kwargs):
        """
        verbose-dependant print util
        """
        if self.verbose > 0:
            print(*args, **kwargs)

    @torch.no_grad()
    def infer_all(
        self,
        x,
        numpy=True,
        stores={},
        bin_value=-1,
        half=False,
        xla=False,
        cloudy=True,
        auto_resize_640=False,
        ignore_event=set(),
        return_masks=False,
    ):
        """
        Create a dictionnary of events from a numpy or tensor,
        single or batch image data.

        stores is a dictionnary of times for the Timer class.

        bin_value is used to binarize (or not) flood masks
        """
        assert self.is_setup
        assert len(x.shape) in {3, 4}, f"Unknown Data shape {x.shape}"

        # convert numpy to tensor
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, device=self.device)

        # add batch dimension
        if len(x.shape) == 3:
            x.unsqueeze_(0)

        # permute channels as second dimension
        if x.shape[1] != 3:
            assert x.shape[-1] == 3, f"Unknown x shape to permute {x.shape}"
            x = x.permute(0, 3, 1, 2)

        # send to device
        if x.device != self.device:
            x = x.to(self.device)

        # interpolate to standard input size
        if auto_resize_640 and (x.shape[-1] != 640 or x.shape[-2] != 640):
            x = torch.nn.functional.interpolate(x, (640, 640), mode="bilinear")

        if half:
            x = x.half()

        # adjust painter's latent vector
        self.G.painter.set_latent_shape(x.shape, True)

        with Timer(store=stores.get("all events", [])):
            # encode
            with Timer(store=stores.get("encode", [])):
                z = self.G.encode(x)
                if xla:
                    xm.mark_step()

            # predict from masker
            with Timer(store=stores.get("depth", [])):
                depth, z_depth = self.G.decoders["d"](z)
                if xla:
                    xm.mark_step()
            with Timer(store=stores.get("segmentation", [])):
                segmentation = self.G.decoders["s"](z, z_depth)
                if xla:
                    xm.mark_step()
            with Timer(store=stores.get("mask", [])):
                cond = self.G.make_m_cond(depth, segmentation, x)
                mask = self.G.mask(z=z, cond=cond, z_depth=z_depth)
                if xla:
                    xm.mark_step()

            # apply events
            if "wildfire" not in ignore_event:
                with Timer(store=stores.get("wildfire", [])):
                    wildfire = self.compute_fire(x, seg_preds=segmentation)
            if "smog" not in ignore_event:
                with Timer(store=stores.get("smog", [])):
                    smog = self.compute_smog(x, d=depth, s=segmentation)
            if "flood" not in ignore_event:
                with Timer(store=stores.get("flood", [])):
                    flood = self.compute_flood(
                        x,
                        m=mask,
                        s=segmentation,
                        cloudy=cloudy,
                        bin_value=bin_value,
                    )

        if xla:
            xm.mark_step()

        output_data = {}

        if numpy:
            with Timer(store=stores.get("numpy", [])):
                if "flood" not in ignore_event:
                    # normalize to 0-1
                    flood = normalize(flood).cpu()
                    # convert to numpy
                    flood = flood.permute(0, 2, 3, 1).numpy()
                    # convert to 0-255 uint8
                    flood = (flood * 255).astype(np.uint8)
                    output_data["flood"] = flood
                if "wildfire" not in ignore_event:
                    wildfire = normalize(wildfire).cpu()
                    wildfire = wildfire.permute(0, 2, 3, 1).numpy()
                    wildfire = (wildfire * 255).astype(np.uint8)
                    output_data["wildfire"] = wildfire
                if "smog" not in ignore_event:
                    smog = normalize(smog).cpu()
                    smog = smog.permute(0, 2, 3, 1).numpy()
                    smog = (smog * 255).astype(np.uint8)
                    output_data["smog"] = smog

        if return_masks:
            output_data["mask"] = (
                ((mask > bin_value) * 255).cpu().numpy().astype(np.uint8)
            )

        return output_data

    @classmethod
    def resume_from_path(
        cls,
        path,
        overrides={},
        setup=True,
        inference=False,
        new_exp=False,
        device=None,
        verbose=1,
    ):
        """
        Resume and optionally setup a trainer from a specific path,
        using the latest opts and checkpoint. Requires path to contain opts.yaml
        (or increased), url.txt (or increased) and checkpoints/

        Args:
            path (str | pathlib.Path): Trainer to resume
            overrides (dict, optional): Override loaded opts with those. Defaults to {}.
            setup (bool, optional): Wether or not to setup the trainer before
                returning it. Defaults to True.
            inference (bool, optional): Setup should be done in inference mode or not.
                Defaults to False.
            new_exp (bool, optional): Re-use existing comet exp in path or create
                a new one? Defaults to False.
            device (torch.device, optional): Device to use

        Returns:
            climategan.Trainer: Loaded and resumed trainer
        """
        p = resolve(path)
        assert p.exists()

        c = p / "checkpoints"
        assert c.exists() and c.is_dir()

        opts = get_latest_opts(p)
        opts = Dict(merge(overrides, opts))
        opts.train.resume = True

        if new_exp is None:
            exp = None
        elif new_exp is True:
            exp = Experiment(project_name="climategan", **comet_kwargs)
            exp.log_asset_folder(
                str(resolve(Path(__file__)).parent),
                recursive=True,
                log_file_name=True,
            )
            exp.log_parameters(flatten_opts(opts))
        else:
            comet_id = get_existing_comet_id(p)
            exp = ExistingExperiment(previous_experiment=comet_id, **comet_kwargs)

        trainer = cls(opts, comet_exp=exp, device=device, verbose=verbose)

        if setup:
            trainer.setup(inference=inference)
        return trainer

    def save(self):
        save_dir = Path(self.opts.output_path) / Path("checkpoints")
        save_dir.mkdir(exist_ok=True)
        save_path = save_dir / "latest_ckpt.pth"

        # Construct relevant state dicts / optims:
        # Save at least G
        save_dict = {
            "epoch": self.logger.epoch,
            "G": self.G.state_dict(),
            "g_opt": self.g_opt.state_dict(),
            "step": self.logger.global_step,
        }

        if self.D is not None and get_num_params(self.D) > 0:
            save_dict["D"] = self.D.state_dict()
            save_dict["d_opt"] = self.d_opt.state_dict()

        if (
            self.logger.epoch >= self.opts.train.min_save_epoch
            and self.logger.epoch % self.opts.train.save_n_epochs == 0
        ):
            torch.save(save_dict, save_dir / f"epoch_{self.logger.epoch}_ckpt.pth")

        torch.save(save_dict, save_path)

    def resume(self, inference=False):
        tpu = "xla" in str(self.device)
        if tpu:
            print("Resuming on TPU:", self.device)

        m_path = Path(self.opts.load_paths.m)
        p_path = Path(self.opts.load_paths.p)
        pm_path = Path(self.opts.load_paths.pm)
        output_path = Path(self.opts.output_path)

        map_loc = self.device if not tpu else "cpu"

        if "m" in self.opts.tasks and "p" in self.opts.tasks:
            # ----------------------------------------
            # -----  Masker and Painter Loading  -----
            # ----------------------------------------

            # want to resume a pm model but no path was provided:
            # resume a single pm model from output_path
            if all([str(p) == "none" for p in [m_path, p_path, pm_path]]):
                checkpoint_path = output_path / "checkpoints/latest_ckpt.pth"
                print("Resuming P+M model from", str(checkpoint_path))
                checkpoint = torch.load(checkpoint_path, map_location=map_loc)

            # want to resume a pm model with a pm_path provided:
            # resume a single pm model from load_paths.pm
            # depending on whether a dir or a file is specified
            elif str(pm_path) != "none":
                assert pm_path.exists()

                if pm_path.is_dir():
                    checkpoint_path = pm_path / "checkpoints/latest_ckpt.pth"
                else:
                    assert pm_path.suffix == ".pth"
                    checkpoint_path = pm_path

                print("Resuming P+M model from", str(checkpoint_path))
                checkpoint = torch.load(checkpoint_path, map_location=map_loc)

            # want to resume a pm model, pm_path not provided:
            # m_path and p_path must be provided as dirs or pth files
            elif m_path != p_path:
                assert m_path.exists()
                assert p_path.exists()

                if m_path.is_dir():
                    m_path = m_path / "checkpoints/latest_ckpt.pth"

                if p_path.is_dir():
                    p_path = p_path / "checkpoints/latest_ckpt.pth"

                assert m_path.suffix == ".pth"
                assert p_path.suffix == ".pth"

                print(f"Resuming P+M model from \n  -{p_path} \nand \n  -{m_path}")
                m_checkpoint = torch.load(m_path, map_location=map_loc)
                p_checkpoint = torch.load(p_path, map_location=map_loc)
                checkpoint = merge(m_checkpoint, p_checkpoint)

            else:
                raise ValueError(
                    "Cannot resume a P+M model with provided load_paths:\n{}".format(
                        self.opts.load_paths
                    )
                )

        else:
            # ----------------------------------
            # -----  Single Model Loading  -----
            # ----------------------------------

            # cannot specify both paths
            if str(m_path) != "none" and str(p_path) != "none":
                raise ValueError(
                    "Opts tasks are {} but received 2 values for the load_paths".format(
                        self.opts.tasks
                    )
                )

            # specified m
            elif str(m_path) != "none":
                assert m_path.exists()
                assert "m" in self.opts.tasks
                model = "M"
                if m_path.is_dir():
                    m_path = m_path / "checkpoints/latest_ckpt.pth"
                checkpoint_path = m_path

            # specified m
            elif str(p_path) != "none":
                assert p_path.exists()
                assert "p" in self.opts.tasks
                model = "P"
                if p_path.is_dir():
                    p_path = p_path / "checkpoints/latest_ckpt.pth"
                checkpoint_path = p_path

            # specified neither p nor m: resume from output_path
            else:
                model = "P" if "p" in self.opts.tasks else "M"
                checkpoint_path = output_path / "checkpoints/latest_ckpt.pth"

            print(f"Resuming {model} model from {checkpoint_path}")
            checkpoint = torch.load(checkpoint_path, map_location=map_loc)

        # On TPUs must send the data to the xla device as it cannot be mapped
        # there directly from torch.load
        if tpu:
            checkpoint = xm.send_cpu_data_to_device(checkpoint, self.device)

        # -----------------------
        # -----  Restore G  -----
        # -----------------------
        if inference:
            incompatible_keys = self.G.load_state_dict(checkpoint["G"], strict=False)
            if incompatible_keys.missing_keys:
                print("WARNING: Missing keys in self.G.load_state_dict, keeping inits")
                print(incompatible_keys.missing_keys)
            if incompatible_keys.unexpected_keys:
                print("WARNING: Ignoring Unexpected keys in self.G.load_state_dict")
                print(incompatible_keys.unexpected_keys)
        else:
            self.G.load_state_dict(checkpoint["G"])

        if inference:
            # only G is needed to infer
            print("Done loading checkpoints.")
            return

        self.g_opt.load_state_dict(checkpoint["g_opt"])

        # ------------------------------
        # -----  Resume scheduler  -----
        # ------------------------------
        # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
        for _ in range(self.logger.epoch + 1):
            self.update_learning_rates()

        # -----------------------
        # -----  Restore D  -----
        # -----------------------
        if self.D is not None and get_num_params(self.D) > 0:
            self.D.load_state_dict(checkpoint["D"])
            self.d_opt.load_state_dict(checkpoint["d_opt"])

        # ---------------------------
        # -----  Resore logger  -----
        # ---------------------------
        self.logger.epoch = checkpoint["epoch"]
        self.logger.global_step = checkpoint["step"]
        self.exp.log_text(
            "Resuming from epoch {} & step {}".format(
                checkpoint["epoch"], checkpoint["step"]
            )
        )
        # Round step to even number for extraGradient
        if self.logger.global_step % 2 != 0:
            self.logger.global_step += 1

    def eval_mode(self):
        """
        Set trainer's models in eval mode
        """
        if self.G is not None:
            self.G.eval()
        if self.D is not None:
            self.D.eval()
        self.current_mode = "eval"

    def train_mode(self):
        """
        Set trainer's models in train mode
        """
        if self.G is not None:
            self.G.train()
        if self.D is not None:
            self.D.train()

        self.current_mode = "train"

    def assert_z_matches_x(self, x, z):
        assert x.shape[0] == (
            z.shape[0] if not isinstance(z, (list, tuple)) else z[0].shape[0]
        ), "x-> {}, z->{}".format(
            x.shape, z.shape if not isinstance(z, (list, tuple)) else z[0].shape
        )

    def batch_to_device(self, b):
        """sends the data in b to self.device

        Args:
            b (dict): the batch dictionnay

        Returns:
            dict: the batch dictionnary with its "data" field sent to self.device
        """
        for task, tensor in b["data"].items():
            b["data"][task] = tensor.to(self.device)
        return b

    def sample_painter_z(self, batch_size):
        return self.G.sample_painter_z(batch_size, self.device)

    @property
    def train_loaders(self):
        """Get a zip of all training loaders

        Returns:
            generator: zip generator yielding tuples:
                (batch_rf, batch_rn, batch_sf, batch_sn)
        """
        return zip(*list(self.loaders["train"].values()))

    @property
    def val_loaders(self):
        """Get a zip of all validation loaders

        Returns:
            generator: zip generator yielding tuples:
                (batch_rf, batch_rn, batch_sf, batch_sn)
        """
        return zip(*list(self.loaders["val"].values()))

    def compute_latent_shape(self):
        """Compute the latent shape, i.e. the Encoder's output shape,
        from a batch.

        Raises:
            ValueError: If no loader, the latent_shape cannot be inferred

        Returns:
            tuple: (c, h, w)
        """
        x = None
        for mode in self.all_loaders:
            for domain in self.all_loaders.loaders[mode]:
                x = (
                    self.all_loaders[mode][domain]
                    .dataset[0]["data"]["x"]
                    .to(self.device)
                )
                break
            if x is not None:
                break

        if x is None:
            raise ValueError("No batch found to compute_latent_shape")

        x = x.unsqueeze(0)
        z = self.G.encode(x)
        return z.shape[1:] if not isinstance(z, (list, tuple)) else z[0].shape[1:]

    def g_opt_step(self):
        """Run an optimizing step ; if using ExtraAdam, there needs to be an extrapolation
        step every other step
        """
        if "extra" in self.opts.gen.opt.optimizer.lower() and (
            self.logger.global_step % 2 == 0
        ):
            self.g_opt.extrapolation()
        else:
            self.g_opt.step()

    def d_opt_step(self):
        """Run an optimizing step ; if using ExtraAdam, there needs to be an extrapolation
        step every other step
        """
        if "extra" in self.opts.dis.opt.optimizer.lower() and (
            self.logger.global_step % 2 == 0
        ):
            self.d_opt.extrapolation()
        else:
            self.d_opt.step()

    def update_learning_rates(self):
        if self.g_scheduler is not None:
            self.g_scheduler.step()
        if self.d_scheduler is not None:
            self.d_scheduler.step()

    def setup(self, inference=False):
        """Prepare the trainer before it can be used to train the models:
        * initialize G and D
        * creates 2 optimizers
        """
        self.logger.global_step = 0
        start_time = time()
        self.logger.time.start_time = start_time
        verbose = self.verbose

        if not inference:
            self.all_loaders = get_all_loaders(self.opts)

        # -----------------------
        # -----  Generator  -----
        # -----------------------
        __t = time()
        print("Creating generator...")

        self.G: OmniGenerator = create_generator(
            self.opts, device=self.device, no_init=inference, verbose=verbose
        )

        self.has_painter = get_num_params(self.G.painter) or self.G.load_val_painter()

        if self.has_painter:
            self.G.painter.set_latent_shape(find_target_size(self.opts, "x"), True)

        print(f"Generator OK in {time() - __t:.1f}s.")

        if inference:  # Inference mode: no more than a Generator needed
            print("Inference mode: no Discriminator, no optimizers")
            print_num_parameters(self)
            self.switch_data(to="base")
            if self.opts.train.resume:
                self.resume(True)
            self.eval_mode()
            print("Trainer is in evaluation mode.")
            print("Setup done.")
            self.is_setup = True
            return

        # ---------------------------
        # -----  Discriminator  -----
        # ---------------------------

        self.D: OmniDiscriminator = create_discriminator(
            self.opts, self.device, verbose=verbose
        )
        print("Discriminator OK.")

        print_num_parameters(self)

        # --------------------------
        # -----  Optimization  -----
        # --------------------------
        # Get different optimizers for each task (different learning rates)
        self.g_opt, self.g_scheduler, self.lr_names["G"] = get_optimizer(
            self.G, self.opts.gen.opt, self.opts.tasks
        )

        if get_num_params(self.D) > 0:
            self.d_opt, self.d_scheduler, self.lr_names["D"] = get_optimizer(
                self.D, self.opts.dis.opt, self.opts.tasks, True
            )
        else:
            self.d_opt, self.d_scheduler = None, None

        self.losses = get_losses(self.opts, verbose, device=self.device)

        if "p" in self.opts.tasks and self.opts.gen.p.diff_aug.use:
            self.diff_transforms = DiffTransforms(self.opts.gen.p.diff_aug)

        if verbose > 0:
            for mode, mode_dict in self.all_loaders.items():
                for domain, domain_loader in mode_dict.items():
                    print(
                        "Loader {} {} : {}".format(
                            mode, domain, len(domain_loader.dataset)
                        )
                    )

        # ----------------------------
        # -----  Display images  -----
        # ----------------------------
        self.set_display_images()

        # -------------------------------
        # -----  Log Architectures  -----
        # -------------------------------
        self.logger.log_architecture()

        # -----------------------------
        # -----  Set data source  -----
        # -----------------------------
        if self.kitti_pretrain:
            self.switch_data(to="kitti")
        else:
            self.switch_data(to="base")

        # -------------------------
        # -----  Setup Done.  -----
        # -------------------------
        print(" " * 50, end="\r")
        print("Done creating display images")

        if self.opts.train.resume:
            print("Resuming Model (inference: False)")
            self.resume(False)
        else:
            print("Not resuming: starting a new model")

        print("Setup done.")
        self.is_setup = True

    def switch_data(self, to="kitti"):
        caller = inspect.stack()[1].function
        print(f"[{caller}] Switching data source to", to)
        self.data_source = to
        if to == "kitti":
            self.display_images = self.kitty_display_images
            if self.all_loaders is not None:
                self.loaders = {
                    mode: {"s": self.all_loaders[mode]["kitti"]}
                    for mode in self.all_loaders
                }
        else:
            self.display_images = self.base_display_images
            if self.all_loaders is not None:
                self.loaders = {
                    mode: {
                        domain: self.all_loaders[mode][domain]
                        for domain in self.all_loaders[mode]
                        if domain != "kitti"
                    }
                    for mode in self.all_loaders
                }
        if (
            self.logger.global_step % 2 != 0
            and "extra" in self.opts.dis.opt.optimizer.lower()
        ):
            print(
                "Warning: artificially bumping step to run an extrapolation step first."
            )
            self.logger.global_step += 1

    def set_display_images(self, use_all=False):
        for mode, mode_dict in self.all_loaders.items():

            if self.kitti_pretrain:
                self.kitty_display_images[mode] = {}
            self.base_display_images[mode] = {}

            for domain in mode_dict:

                if self.kitti_pretrain and domain == "kitti":
                    target_dict = self.kitty_display_images
                else:
                    if domain == "kitti":
                        continue
                    target_dict = self.base_display_images

                dataset = self.all_loaders[mode][domain].dataset
                display_indices = (
                    get_display_indices(self.opts, domain, len(dataset))
                    if not use_all
                    else list(range(len(dataset)))
                )
                ldis = len(display_indices)
                print(
                    f"       Creating {ldis} {mode} {domain} display images...",
                    end="\r",
                    flush=True,
                )
                target_dict[mode][domain] = [
                    Dict(dataset[i])
                    for i in display_indices
                    if (print(f"({i})", end="\r") is None and i < len(dataset))
                ]
                if self.exp is not None:
                    for im_id, d in enumerate(target_dict[mode][domain]):
                        self.exp.log_parameter(
                            "display_image_{}_{}_{}".format(mode, domain, im_id),
                            d["paths"],
                        )

    def train(self):
        """For each epoch:
        * train
        * eval
        * save
        """
        assert self.is_setup

        for self.logger.epoch in range(
            self.logger.epoch, self.logger.epoch + self.opts.train.epochs
        ):
            # backprop painter's disc loss to masker
            if (
                self.logger.epoch == self.opts.gen.p.pl4m_epoch
                and get_num_params(self.G.painter) > 0
                and "p" in self.opts.tasks
                and self.opts.gen.m.use_pl4m
            ):
                print(
                    "\n\n >>> Enabling pl4m at epoch {}\n\n".format(self.logger.epoch)
                )
                self.use_pl4m = True

            self.run_epoch()
            self.run_evaluation(verbose=1)
            self.save()

            # end vkitti2 pre-training
            if self.logger.epoch == self.opts.train.kitti.epochs - 1:
                self.switch_data(to="base")
                self.kitti_pretrain = False

            # end pseudo training
            if self.logger.epoch == self.opts.train.pseudo.epochs - 1:
                self.pseudo_training_tasks = set()

    def run_epoch(self):
        """Runs an epoch:
        * checks trainer is setup
        * gets a tuple of batches per domain
        * sends batches to device
        * updates sequentially G, D
        """
        assert self.is_setup
        self.train_mode()
        if self.exp is not None:
            self.exp.log_parameter("epoch", self.logger.epoch)
        epoch_len = min(len(loader) for loader in self.loaders["train"].values())
        epoch_desc = "Epoch {}".format(self.logger.epoch)
        self.logger.time.epoch_start = time()

        for multi_batch_tuple in tqdm(
            self.train_loaders,
            desc=epoch_desc,
            total=epoch_len,
            mininterval=0.5,
            unit="batch",
        ):

            self.logger.time.step_start = time()
            multi_batch_tuple = shuffle_batch_tuple(multi_batch_tuple)

            # The `[0]` is because the domain is contained in a list
            multi_domain_batch = {
                batch["domain"][0]: self.batch_to_device(batch)
                for batch in multi_batch_tuple
            }
            # ------------------------------
            # -----  Update Generator  -----
            # ------------------------------

            # freeze params of the discriminator
            if self.d_opt is not None:
                for param in self.D.parameters():
                    param.requires_grad = False

            self.update_G(multi_domain_batch)

            # ----------------------------------
            # -----  Update Discriminator  -----
            # ----------------------------------

            # unfreeze params of the discriminator
            if self.d_opt is not None and not self.kitti_pretrain:
                for param in self.D.parameters():
                    param.requires_grad = True

                self.update_D(multi_domain_batch)

            # -------------------------
            # -----  Log Metrics  -----
            # -------------------------
            self.logger.global_step += 1
            self.logger.log_step_time(time())

        if not self.kitti_pretrain:
            self.update_learning_rates()

        self.logger.log_learning_rates()
        self.logger.log_epoch_time(time())

    def update_G(self, multi_domain_batch, verbose=0):
        """Perform an update on g from multi_domain_batch which is a dictionary
        domain => batch

        * automatic mixed precision according to self.opts.train.amp
        * compute loss for each task
        * loss.backward()
        * g_opt_step()
            * g_opt.step() or .extrapolation() depending on self.logger.global_step
        * logs losses on comet.ml with self.logger.log_losses(model_to_update="G")

        Args:
            multi_domain_batch (dict): dictionnary of domain batches
        """
        zero_grad(self.G)
        if self.opts.train.amp:
            with autocast():
                g_loss = self.get_G_loss(multi_domain_batch, verbose)
            self.grad_scaler_g.scale(g_loss).backward()
            self.grad_scaler_g.step(self.g_opt)
            self.grad_scaler_g.update()
        else:
            g_loss = self.get_G_loss(multi_domain_batch, verbose)
            g_loss.backward()
            self.g_opt_step()

        self.logger.log_losses(model_to_update="G", mode="train")

    def update_D(self, multi_domain_batch, verbose=0):
        zero_grad(self.D)

        if self.opts.train.amp:
            with autocast():
                d_loss = self.get_D_loss(multi_domain_batch, verbose)
            self.grad_scaler_d.scale(d_loss).backward()
            self.grad_scaler_d.step(self.d_opt)
            self.grad_scaler_d.update()
        else:
            d_loss = self.get_D_loss(multi_domain_batch, verbose)
            d_loss.backward()
            self.d_opt_step()

        self.logger.losses.disc.total_loss = d_loss.item()
        self.logger.log_losses(model_to_update="D", mode="train")

    def get_D_loss(self, multi_domain_batch, verbose=0):
        """Compute the discriminators' losses:

        * for each domain-specific batch:
        * encode the image
        * get the conditioning tensor if using spade
        * source domain is the data's domain, sequentially r|s then f|n
        * get the target domain accordingly
        * compute the translated image from the data
        * compute the source domain discriminator's loss on the data
        * compute the target domain discriminator's loss on the translated image

        # ? In this setting, each D[decoder][domain] is updated twice towards
        # real or fake data

        See readme's update d section for details

        Args:
            multi_domain_batch ([type]): [description]

        Returns:
            [type]: [description]
        """

        disc_loss = {
            "m": {"Advent": 0},
            "s": {"Advent": 0},
        }
        if self.opts.dis.p.use_local_discriminator:
            disc_loss["p"] = {"global": 0, "local": 0}
        else:
            disc_loss["p"] = {"gan": 0}

        for domain, batch in multi_domain_batch.items():
            x = batch["data"]["x"]

            # ---------------------
            # -----  Painter  -----
            # ---------------------
            if domain == "rf" and self.has_painter:
                m = batch["data"]["m"]
                # sample vector
                with torch.no_grad():
                    # see spade compute_discriminator_loss
                    fake = self.G.paint(m, x)
                    if self.opts.gen.p.diff_aug.use:
                        fake = self.diff_transforms(fake)
                        x = self.diff_transforms(x)
                    fake = fake.detach()
                    fake.requires_grad_()

                if self.opts.dis.p.use_local_discriminator:
                    fake_d_global = self.D["p"]["global"](fake)
                    real_d_global = self.D["p"]["global"](x)

                    fake_d_local = self.D["p"]["local"](fake * m)
                    real_d_local = self.D["p"]["local"](x * m)

                    global_loss = self.losses["D"]["p"](fake_d_global, False, True)
                    global_loss += self.losses["D"]["p"](real_d_global, True, True)

                    local_loss = self.losses["D"]["p"](fake_d_local, False, True)
                    local_loss += self.losses["D"]["p"](real_d_local, True, True)

                    disc_loss["p"]["global"] += global_loss
                    disc_loss["p"]["local"] += local_loss
                else:
                    real_cat = torch.cat([m, x], axis=1)
                    fake_cat = torch.cat([m, fake], axis=1)
                    real_fake_cat = torch.cat([real_cat, fake_cat], dim=0)
                    real_fake_d = self.D["p"](real_fake_cat)
                    real_d, fake_d = divide_pred(real_fake_d)
                    disc_loss["p"]["gan"] = self.losses["D"]["p"](fake_d, False, True)
                    disc_loss["p"]["gan"] += self.losses["D"]["p"](real_d, True, True)

            # --------------------
            # -----  Masker  -----
            # --------------------
            else:
                z = self.G.encode(x)
                s_pred = d_pred = cond = z_depth = None

                if "s" in batch["data"]:
                    if "d" in self.opts.tasks and self.opts.gen.s.use_dada:
                        d_pred, z_depth = self.G.decoders["d"](z)

                    step_loss, s_pred = self.masker_s_loss(
                        x, z, d_pred, z_depth, None, domain, for_="D"
                    )
                    step_loss *= self.opts.train.lambdas.advent.adv_main
                    disc_loss["s"]["Advent"] += step_loss

                if "m" in batch["data"]:
                    if "d" in self.opts.tasks:
                        if self.opts.gen.m.use_spade:
                            if d_pred is None:
                                d_pred, z_depth = self.G.decoders["d"](z)
                            cond = self.G.make_m_cond(d_pred, s_pred, x)
                        elif self.opts.gen.m.use_dada:
                            if d_pred is None:
                                d_pred, z_depth = self.G.decoders["d"](z)

                    step_loss, _ = self.masker_m_loss(
                        x,
                        z,
                        None,
                        domain,
                        for_="D",
                        cond=cond,
                        z_depth=z_depth,
                        depth_preds=d_pred,
                    )
                    step_loss *= self.opts.train.lambdas.advent.adv_main
                    disc_loss["m"]["Advent"] += step_loss

        self.logger.losses.disc.update(
            {
                dom: {
                    k: v.item() if isinstance(v, torch.Tensor) else v
                    for k, v in d.items()
                }
                for dom, d in disc_loss.items()
            }
        )

        loss = sum(v for d in disc_loss.values() for k, v in d.items())
        return loss

    def get_G_loss(self, multi_domain_batch, verbose=0):
        m_loss = p_loss = None

        # For now, always compute "representation loss"
        g_loss = 0

        if any(t in self.opts.tasks for t in "msd"):
            m_loss = self.get_masker_loss(multi_domain_batch)
            self.logger.losses.gen.masker = m_loss.item()
            g_loss += m_loss

        if "p" in self.opts.tasks and not self.kitti_pretrain:
            p_loss = self.get_painter_loss(multi_domain_batch)
            self.logger.losses.gen.painter = p_loss.item()
            g_loss += p_loss

        assert g_loss != 0 and not isinstance(g_loss, int), "No update in get_G_loss!"

        self.logger.losses.gen.total_loss = g_loss.item()

        return g_loss

    def get_masker_loss(self, multi_domain_batch):  # TODO update docstrings
        """Only update the representation part of the model, meaning everything
        but the translation part

        * for each batch in available domains:
            * compute task-specific losses
            * compute the adaptation and translation decoders' auto-encoding losses
            * compute the adaptation decoder's translation losses (GAN and Cycle)

        Args:
            multi_domain_batch (dict): dictionnary mapping domain names to batches from
            the trainer's loaders

        Returns:
            torch.Tensor: scalar loss tensor, weighted according to opts.train.lambdas
        """
        m_loss = 0
        for domain, batch in multi_domain_batch.items():
            # We don't care about the flooded domain here
            if domain == "rf":
                continue

            x = batch["data"]["x"]
            z = self.G.encode(x)

            # --------------------------------------
            # -----  task-specific losses (2)  -----
            # --------------------------------------
            d_pred = s_pred = z_depth = None
            for task in ["d", "s", "m"]:
                if task not in batch["data"]:
                    continue

                target = batch["data"][task]

                if task == "d":
                    loss, d_pred, z_depth = self.masker_d_loss(
                        x, z, target, domain, "G"
                    )
                    m_loss += loss
                    self.logger.losses.gen.task["d"][domain] = loss.item()

                elif task == "s":
                    loss, s_pred = self.masker_s_loss(
                        x, z, d_pred, z_depth, target, domain, "G"
                    )
                    m_loss += loss
                    self.logger.losses.gen.task["s"][domain] = loss.item()

                elif task == "m":
                    cond = None
                    if self.opts.gen.m.use_spade:
                        if not self.opts.gen.m.detach:
                            d_pred = d_pred.clone()
                            s_pred = s_pred.clone()
                        cond = self.G.make_m_cond(d_pred, s_pred, x)

                    loss, _ = self.masker_m_loss(
                        x,
                        z,
                        target,
                        domain,
                        "G",
                        cond=cond,
                        z_depth=z_depth,
                        depth_preds=d_pred,
                    )
                    m_loss += loss
                    self.logger.losses.gen.task["m"][domain] = loss.item()

        return m_loss

    def get_painter_loss(self, multi_domain_batch):
        """Computes the translation loss when flooding/deflooding images

        Args:
            multi_domain_batch (dict): dictionnary mapping domain names to batches from
            the trainer's loaders

        Returns:
            torch.Tensor: scalar loss tensor, weighted according to opts.train.lambdas
        """
        step_loss = 0
        # self.g_opt.zero_grad()
        lambdas = self.opts.train.lambdas
        batch_domain = "rf"
        batch = multi_domain_batch[batch_domain]

        x = batch["data"]["x"]
        # ! different mask: hides water to be reconstructed
        # ! 1 for water, 0 otherwise
        m = batch["data"]["m"]
        fake_flooded = self.G.paint(m, x)

        # ----------------------
        # -----  VGG Loss  -----
        # ----------------------
        if lambdas.G.p.vgg != 0:
            loss = self.losses["G"]["p"]["vgg"](
                vgg_preprocess(fake_flooded * m), vgg_preprocess(x * m)
            )
            loss *= lambdas.G.p.vgg
            self.logger.losses.gen.p.vgg = loss.item()
            step_loss += loss

        # ---------------------
        # -----  TV Loss  -----
        # ---------------------
        if lambdas.G.p.tv != 0:
            loss = self.losses["G"]["p"]["tv"](fake_flooded * m)
            loss *= lambdas.G.p.tv
            self.logger.losses.gen.p.tv = loss.item()
            step_loss += loss

        # --------------------------
        # -----  Context Loss  -----
        # --------------------------
        if lambdas.G.p.context != 0:
            loss = self.losses["G"]["p"]["context"](fake_flooded, x, m)
            loss *= lambdas.G.p.context
            self.logger.losses.gen.p.context = loss.item()
            step_loss += loss

        # ---------------------------------
        # -----  Reconstruction Loss  -----
        # ---------------------------------
        if lambdas.G.p.reconstruction != 0:
            loss = self.losses["G"]["p"]["reconstruction"](fake_flooded, x, m)
            loss *= lambdas.G.p.reconstruction
            self.logger.losses.gen.p.reconstruction = loss.item()
            step_loss += loss

        # -------------------------------------
        # -----  Local & Global GAN Loss  -----
        # -------------------------------------
        if self.opts.gen.p.diff_aug.use:
            fake_flooded = self.diff_transforms(fake_flooded)
            x = self.diff_transforms(x)

        if self.opts.dis.p.use_local_discriminator:
            fake_d_global = self.D["p"]["global"](fake_flooded)
            fake_d_local = self.D["p"]["local"](fake_flooded * m)

            real_d_global = self.D["p"]["global"](x)

            # Note: discriminator returns [out_1,...,out_num_D] outputs
            # Each out_i is a list [feat1, feat2, ..., pred_i]

            self.logger.losses.gen.p.gan = 0

            loss = self.losses["G"]["p"]["gan"](fake_d_global, True, False)
            loss += self.losses["G"]["p"]["gan"](fake_d_local, True, False)
            loss *= lambdas.G["p"]["gan"]

            self.logger.losses.gen.p.gan = loss.item()

            step_loss += loss

            # -----------------------------------
            # -----  Feature Matching Loss  -----
            # -----------------------------------
            # (only on global discriminator)
            # Order must be real, fake
            if self.opts.dis.p.get_intermediate_features:
                loss = self.losses["G"]["p"]["featmatch"](real_d_global, fake_d_global)
                loss *= lambdas.G["p"]["featmatch"]

                if isinstance(loss, float):
                    self.logger.losses.gen.p.featmatch = loss
                else:
                    self.logger.losses.gen.p.featmatch = loss.item()

                step_loss += loss

        # -------------------------------------------
        # -----  Single Discriminator GAN Loss  -----
        # -------------------------------------------
        else:
            real_cat = torch.cat([m, x], axis=1)
            fake_cat = torch.cat([m, fake_flooded], axis=1)
            real_fake_cat = torch.cat([real_cat, fake_cat], dim=0)

            real_fake_d = self.D["p"](real_fake_cat)
            real_d, fake_d = divide_pred(real_fake_d)

            loss = self.losses["G"]["p"]["gan"](fake_d, True, False)
            self.logger.losses.gen.p.gan = loss.item()
            step_loss += loss

            # -----------------------------------
            # -----  Feature Matching Loss  -----
            # -----------------------------------
            if self.opts.dis.p.get_intermediate_features and lambdas.G.p.featmatch != 0:
                loss = self.losses["G"]["p"]["featmatch"](real_d, fake_d)
                loss *= lambdas.G.p.featmatch

                if isinstance(loss, float):
                    self.logger.losses.gen.p.featmatch = loss
                else:
                    self.logger.losses.gen.p.featmatch = loss.item()

                step_loss += loss

        return step_loss

    def masker_d_loss(self, x, z, target, domain, for_="G"):
        assert for_ in {"G", "D"}
        self.assert_z_matches_x(x, z)
        assert x.shape[0] == target.shape[0]
        zero_loss = torch.tensor(0.0, device=self.device)
        weight = self.opts.train.lambdas.G.d.main

        prediction, z_depth = self.G.decoders["d"](z)

        if self.opts.gen.d.classify.enable:
            target.squeeze_(1)

        full_loss = self.losses["G"]["tasks"]["d"](prediction, target)
        full_loss *= weight

        if weight == 0 or (domain == "r" and "d" not in self.pseudo_training_tasks):
            return zero_loss, prediction, z_depth

        return full_loss, prediction, z_depth

    def masker_s_loss(self, x, z, depth_preds, z_depth, target, domain, for_="G"):
        assert for_ in {"G", "D"}
        assert domain in {"r", "s"}
        self.assert_z_matches_x(x, z)
        assert x.shape[0] == target.shape[0] if target is not None else True
        full_loss = torch.tensor(0.0, device=self.device)
        softmax_preds = None
        # --------------------------
        # -----  Segmentation  -----
        # --------------------------
        pred = None
        if for_ == "G" or self.opts.gen.s.use_advent:
            pred = self.G.decoders["s"](z, z_depth)

        # Supervised segmentation loss: crossent for sim domain,
        # crossent_pseudo for real ; loss is crossent in any case
        if for_ == "G":
            if domain == "s" or "s" in self.pseudo_training_tasks:
                if domain == "s":
                    logger = self.logger.losses.gen.task["s"]["crossent"]
                    weight = self.opts.train.lambdas.G["s"]["crossent"]
                else:
                    logger = self.logger.losses.gen.task["s"]["crossent_pseudo"]
                    weight = self.opts.train.lambdas.G["s"]["crossent_pseudo"]

                if weight != 0:
                    # Cross-Entropy loss
                    loss_func = self.losses["G"]["tasks"]["s"]["crossent"]
                    loss = loss_func(pred, target.squeeze(1))
                    loss *= weight
                    full_loss += loss
                    logger[domain] = loss.item()

            if domain == "r":
                weight = self.opts.train.lambdas.G["s"]["minent"]
                if self.opts.gen.s.use_minent and weight != 0:
                    softmax_preds = softmax(pred, dim=1)
                    # Entropy minimization loss
                    loss = self.losses["G"]["tasks"]["s"]["minent"](softmax_preds)
                    loss *= weight
                    full_loss += loss

                    self.logger.losses.gen.task["s"]["minent"]["r"] = loss.item()

        # Fool ADVENT discriminator
        if self.opts.gen.s.use_advent:
            if self.opts.gen.s.use_dada and depth_preds is not None:
                depth_preds = depth_preds.detach()
            else:
                depth_preds = None

            if for_ == "D":
                domain_label = domain
                logger = {}
                loss_func = self.losses["D"]["advent"]
                pred = pred.detach()
                weight = self.opts.train.lambdas.advent.adv_main
            else:
                domain_label = "s"
                logger = self.logger.losses.gen.task["s"]["advent"]
                loss_func = self.losses["G"]["tasks"]["s"]["advent"]
                weight = self.opts.train.lambdas.G["s"]["advent"]

            if (for_ == "D" or domain == "r") and weight != 0:
                if softmax_preds is None:
                    softmax_preds = softmax(pred, dim=1)
                loss = loss_func(
                    softmax_preds,
                    self.domain_labels[domain_label],
                    self.D["s"]["Advent"],
                    depth_preds,
                )
                loss *= weight
                full_loss += loss
                logger[domain] = loss.item()

                if for_ == "D":
                    # WGAN: clipping or GP
                    if self.opts.dis.s.gan_type == "GAN" or "WGAN_norm":
                        pass
                    elif self.opts.dis.s.gan_type == "WGAN":
                        for p in self.D["s"]["Advent"].parameters():
                            p.data.clamp_(
                                self.opts.dis.s.wgan_clamp_lower,
                                self.opts.dis.s.wgan_clamp_upper,
                            )
                    elif self.opts.dis.s.gan_type == "WGAN_gp":
                        prob_need_grad = autograd.Variable(pred, requires_grad=True)
                        d_out = self.D["s"]["Advent"](prob_need_grad)
                        gp = get_WGAN_gradient(prob_need_grad, d_out)
                        gp_loss = gp * self.opts.train.lambdas.advent.WGAN_gp
                        full_loss += gp_loss
                    else:
                        raise NotImplementedError

        return full_loss, pred

    def masker_m_loss(
        self, x, z, target, domain, for_="G", cond=None, z_depth=None, depth_preds=None
    ):
        assert for_ in {"G", "D"}
        assert domain in {"r", "s"}
        self.assert_z_matches_x(x, z)
        assert x.shape[0] == target.shape[0] if target is not None else True
        full_loss = torch.tensor(0.0, device=self.device)

        pred_logits = self.G.decoders["m"](z, cond=cond, z_depth=z_depth)
        pred_prob = sigmoid(pred_logits)
        pred_prob_complementary = 1 - pred_prob
        prob = torch.cat([pred_prob, pred_prob_complementary], dim=1)

        if for_ == "G":
            # TV loss
            weight = self.opts.train.lambdas.G.m.tv
            if weight != 0:
                loss = self.losses["G"]["tasks"]["m"]["tv"](pred_prob)
                loss *= weight
                full_loss += loss

                self.logger.losses.gen.task["m"]["tv"][domain] = loss.item()

            weight = self.opts.train.lambdas.G.m.bce
            if domain == "s" and weight != 0:
                # CrossEnt Loss
                loss = self.losses["G"]["tasks"]["m"]["bce"](pred_logits, target)
                loss *= weight
                full_loss += loss
                self.logger.losses.gen.task["m"]["bce"]["s"] = loss.item()

            if domain == "r":

                weight = self.opts.train.lambdas.G["m"]["gi"]
                if self.opts.gen.m.use_ground_intersection and weight != 0:
                    # GroundIntersection loss
                    loss = self.losses["G"]["tasks"]["m"]["gi"](pred_prob, target)
                    loss *= weight
                    full_loss += loss
                    self.logger.losses.gen.task["m"]["gi"]["r"] = loss.item()

                weight = self.opts.train.lambdas.G.m.pl4m
                if self.use_pl4m and weight != 0:
                    # Painter loss
                    pl4m_loss = self.painter_loss_for_masker(x, pred_prob)
                    pl4m_loss *= weight
                    full_loss += pl4m_loss
                    self.logger.losses.gen.task.m.pl4m.r = pl4m_loss.item()

                weight = self.opts.train.lambdas.advent.ent_main
                if self.opts.gen.m.use_minent and weight != 0:
                    # MinEnt loss
                    loss = self.losses["G"]["tasks"]["m"]["minent"](prob)
                    loss *= weight
                    full_loss += loss
                    self.logger.losses.gen.task["m"]["minent"]["r"] = loss.item()

        if self.opts.gen.m.use_advent:
            # AdvEnt loss
            if self.opts.gen.m.use_dada and depth_preds is not None:
                depth_preds = depth_preds.detach()
                depth_preds = torch.nn.functional.interpolate(
                    depth_preds, size=x.shape[-2:], mode="nearest"
                )
            else:
                depth_preds = None

            if for_ == "D":
                domain_label = domain
                logger = {}
                loss_func = self.losses["D"]["advent"]
                prob = prob.detach()
                weight = self.opts.train.lambdas.advent.adv_main
            else:
                domain_label = "s"
                logger = self.logger.losses.gen.task["m"]["advent"]
                loss_func = self.losses["G"]["tasks"]["m"]["advent"]
                weight = self.opts.train.lambdas.advent.adv_main

            if (for_ == "D" or domain == "r") and weight != 0:
                loss = loss_func(
                    prob.to(self.device),
                    self.domain_labels[domain_label],
                    self.D["m"]["Advent"],
                    depth_preds,
                )
                loss *= weight
                full_loss += loss
                logger[domain] = loss.item()

            if for_ == "D":
                # WGAN: clipping or GP
                if self.opts.dis.m.gan_type == "GAN" or "WGAN_norm":
                    pass
                elif self.opts.dis.m.gan_type == "WGAN":
                    for p in self.D["s"]["Advent"].parameters():
                        p.data.clamp_(
                            self.opts.dis.m.wgan_clamp_lower,
                            self.opts.dis.m.wgan_clamp_upper,
                        )
                elif self.opts.dis.m.gan_type == "WGAN_gp":
                    prob_need_grad = autograd.Variable(prob, requires_grad=True)
                    d_out = self.D["s"]["Advent"](prob_need_grad)
                    gp = get_WGAN_gradient(prob_need_grad, d_out)
                    gp_loss = self.opts.train.lambdas.advent.WGAN_gp * gp
                    full_loss += gp_loss
                else:
                    raise NotImplementedError

        return full_loss, prob

    def painter_loss_for_masker(self, x, m):
        # pl4m loss
        # painter should not be updated
        for param in self.G.painter.parameters():
            param.requires_grad = False
        # TODO for param in self.D.painter.parameters():
        #     param.requires_grad = False

        fake_flooded = self.G.paint(m, x)

        if self.opts.dis.p.use_local_discriminator:
            fake_d_global = self.D["p"]["global"](fake_flooded)
            fake_d_local = self.D["p"]["local"](fake_flooded * m)

            # Note: discriminator returns [out_1,...,out_num_D] outputs
            # Each out_i is a list [feat1, feat2, ..., pred_i]

            pl4m_loss = self.losses["G"]["p"]["gan"](fake_d_global, True, False)
            pl4m_loss += self.losses["G"]["p"]["gan"](fake_d_local, True, False)
        else:
            real_cat = torch.cat([m, x], axis=1)
            fake_cat = torch.cat([m, fake_flooded], axis=1)
            real_fake_cat = torch.cat([real_cat, fake_cat], dim=0)

            real_fake_d = self.D["p"](real_fake_cat)
            _, fake_d = divide_pred(real_fake_d)

            pl4m_loss = self.losses["G"]["p"]["gan"](fake_d, True, False)

        if "p" in self.opts.tasks:
            for param in self.G.painter.parameters():
                param.requires_grad = True

        return pl4m_loss

    @torch.no_grad()
    def run_evaluation(self, verbose=0):
        print("******************* Running Evaluation ***********************")
        start_time = time()
        self.eval_mode()
        val_logger = None
        nb_of_batches = None
        for i, multi_batch_tuple in enumerate(self.val_loaders):
            # create a dictionnary (domain => batch) from tuple
            # (batch_domain_0, ..., batch_domain_i)
            # and send it to self.device
            nb_of_batches = i + 1
            multi_domain_batch = {
                batch["domain"][0]: self.batch_to_device(batch)
                for batch in multi_batch_tuple
            }
            self.get_G_loss(multi_domain_batch, verbose)

            if val_logger is None:
                val_logger = deepcopy(self.logger.losses.generator)
            else:
                val_logger = sum_dict(val_logger, self.logger.losses.generator)

        val_logger = div_dict(val_logger, nb_of_batches)
        self.logger.losses.generator = val_logger
        self.logger.log_losses(model_to_update="G", mode="val")

        for d in self.opts.domains:
            self.logger.log_comet_images("train", d)
            self.logger.log_comet_images("val", d)

        if "m" in self.opts.tasks and self.has_painter and not self.kitti_pretrain:
            self.logger.log_comet_combined_images("train", "r")
            self.logger.log_comet_combined_images("val", "r")

        if self.exp is not None:
            print()

        if "m" in self.opts.tasks or "s" in self.opts.tasks:
            self.eval_images("val", "r")
            self.eval_images("val", "s")

        if "p" in self.opts.tasks and not self.kitti_pretrain:
            val_fid = compute_val_fid(self)
            if self.exp is not None:
                self.exp.log_metric("val_fid", val_fid, step=self.logger.global_step)
            else:
                print("Validation FID Score", val_fid)

        self.train_mode()
        timing = int(time() - start_time)
        print("****************** Done in {}s *********************".format(timing))

    def eval_images(self, mode, domain):
        if domain == "s" and self.kitti_pretrain:
            domain = "kitti"
        if domain == "rf" or domain not in self.display_images[mode]:
            return

        metric_funcs = {"accuracy": accuracy, "mIOU": mIOU}
        metric_avg_scores = {"m": {}}
        if "s" in self.opts.tasks:
            metric_avg_scores["s"] = {}
        if "d" in self.opts.tasks and domain == "s" and self.opts.gen.d.classify.enable:
            metric_avg_scores["d"] = {}

        for key in metric_funcs:
            for task in metric_avg_scores:
                metric_avg_scores[task][key] = []

        for im_set in self.display_images[mode][domain]:
            x = im_set["data"]["x"].unsqueeze(0).to(self.device)
            z = self.G.encode(x)

            s_pred = d_pred = z_depth = None

            if "d" in metric_avg_scores:
                d_pred, z_depth = self.G.decoders["d"](z)
                d_pred = d_pred.detach().cpu()

                if domain == "s":
                    d = im_set["data"]["d"].unsqueeze(0).detach()

                    for metric in metric_funcs:
                        metric_score = metric_funcs[metric](d_pred, d)
                        metric_avg_scores["d"][metric].append(metric_score)

            if "s" in metric_avg_scores:
                if z_depth is None:
                    if self.opts.gen.s.use_dada and "d" in self.opts.tasks:
                        _, z_depth = self.G.decoders["d"](z)
                s_pred = self.G.decoders["s"](z, z_depth).detach().cpu()
                s = im_set["data"]["s"].unsqueeze(0).detach()

                for metric in metric_funcs:
                    metric_score = metric_funcs[metric](s_pred, s)
                    metric_avg_scores["s"][metric].append(metric_score)

            if "m" in self.opts:
                cond = None
                if s_pred is not None and d_pred is not None:
                    cond = self.G.make_m_cond(d_pred, s_pred, x)
                if z_depth is None:
                    if self.opts.gen.m.use_dada and "d" in self.opts.tasks:
                        _, z_depth = self.G.decoders["d"](z)

                pred_mask = (
                    (self.G.mask(z=z, cond=cond, z_depth=z_depth)).detach().cpu()
                )
                pred_mask = (pred_mask > 0.5).to(torch.float32)
                pred_prob = torch.cat([1 - pred_mask, pred_mask], dim=1)

                m = im_set["data"]["m"].unsqueeze(0).detach()

                for metric in metric_funcs:
                    if metric != "mIOU":
                        metric_score = metric_funcs[metric](pred_mask, m)
                    else:
                        metric_score = metric_funcs[metric](pred_prob, m)

                    metric_avg_scores["m"][metric].append(metric_score)

        metric_avg_scores = {
            task: {
                metric: np.mean(values) if values else float("nan")
                for metric, values in met_dict.items()
            }
            for task, met_dict in metric_avg_scores.items()
        }
        metric_avg_scores = {
            task: {
                metric: value if not np.isnan(value) else -1
                for metric, value in met_dict.items()
            }
            for task, met_dict in metric_avg_scores.items()
        }
        if self.exp is not None:
            self.exp.log_metrics(
                flatten_opts(metric_avg_scores),
                prefix=f"metrics_{mode}_{domain}",
                step=self.logger.global_step,
            )
        else:
            print(f"metrics_{mode}_{domain}")
            print(flatten_opts(metric_avg_scores))

        return 0

    def functional_test_mode(self):
        import atexit

        self.opts.output_path = (
            Path("~").expanduser() / "climategan" / "functional_tests"
        )
        Path(self.opts.output_path).mkdir(parents=True, exist_ok=True)
        with open(Path(self.opts.output_path) / "is_functional.test", "w") as f:
            f.write("trainer functional test - delete this dir")

        if self.exp is not None:
            self.exp.log_parameter("is_functional_test", True)
        atexit.register(self.del_output_path)

    def del_output_path(self, force=False):
        import shutil

        if not Path(self.opts.output_path).exists():
            return

        if (Path(self.opts.output_path) / "is_functional.test").exists() or force:
            shutil.rmtree(self.opts.output_path)

    def compute_fire(self, x, seg_preds=None, z=None, z_depth=None):
        """
        Transforms input tensor given wildfires event
        Args:
            x (torch.Tensor): Input tensor
                seg_preds (torch.Tensor): Semantic segmentation
                predictions for input tensor
            z (torch.Tensor): Latent vector of encoded "x".
                Can be None if seg_preds is given.
        Returns:
            torch.Tensor: Wildfire version of input tensor
        """

        if seg_preds is None:
            if z is None:
                z = self.G.encode(x)
            seg_preds = self.G.decoders["s"](z, z_depth)

        return add_fire(x, seg_preds, self.opts.events.fire)

    def compute_flood(
        self, x, z=None, z_depth=None, m=None, s=None, cloudy=None, bin_value=-1
    ):
        """
        Applies a flood (mask + paint) to an input image, with optionally
        pre-computed masker z or mask

        Args:
            x (torch.Tensor): B x C x H x W -1:1 input image
            z (torch.Tensor, optional): B x C x H x W Masker latent vector.
                Defaults to None.
            m (torch.Tensor, optional): B x 1 x H x W Mask. Defaults to None.
            bin_value (float, optional): Mask binarization value.
                Set to -1 to use smooth masks (no binarization)

        Returns:
            torch.Tensor: B x 3 x H x W -1:1 flooded image
        """

        if m is None:
            if z is None:
                z = self.G.encode(x)
            if "d" in self.opts.tasks and self.opts.gen.m.use_dada and z_depth is None:
                _, z_depth = self.G.decoders["d"](z)
            m = self.G.mask(x=x, z=z, z_depth=z_depth)

        if bin_value >= 0:
            m = (m > bin_value).to(m.dtype)

        if cloudy:
            assert s is not None
            return self.G.paint_cloudy(m, x, s)

        return self.G.paint(m, x)

    def compute_smog(self, x, z=None, d=None, s=None, use_sky_seg=False):
        # implementation from the paper:
        # HazeRD: An outdoor scene dataset and benchmark for single image dehazing
        sky_mask = None
        if d is None or (use_sky_seg and s is None):
            if z is None:
                z = self.G.encode(x)
            if d is None:
                d, _ = self.G.decoders["d"](z)
            if use_sky_seg and s is None:
                if "s" not in self.opts.tasks:
                    raise ValueError(
                        "Cannot have "
                        + "(use_sky_seg is True and s is None and 's' not in tasks)"
                    )
                s = self.G.decoders["s"](z)
                # TODO: s to sky mask
                # TODO: interpolate to d's size

        params = self.opts.events.smog

        airlight = params.airlight * torch.ones(3)
        airlight = airlight.view(1, -1, 1, 1).to(self.device)

        irradiance = srgb2lrgb(x)

        beta = torch.tensor([params.beta / params.vr] * 3)
        beta = beta.view(1, -1, 1, 1).to(self.device)

        d = normalize(d, mini=0.3, maxi=1.0)
        d = 1.0 / d
        d = normalize(d, mini=0.1, maxi=1)

        if sky_mask is not None:
            d[sky_mask] = 1

        d = torch.nn.functional.interpolate(
            d, size=x.shape[-2:], mode="bilinear", align_corners=True
        )

        d = d.repeat(1, 3, 1, 1)

        transmission = torch.exp(d * -beta)

        smogged = transmission * irradiance + (1 - transmission) * airlight

        smogged = lrgb2srgb(smogged)

        # add yellow filter
        alpha = params.alpha / 255
        yellow_mask = torch.Tensor([params.yellow_color]) / 255
        yellow_filter = (
            yellow_mask.unsqueeze(2)
            .unsqueeze(2)
            .repeat(1, 1, smogged.shape[-2], smogged.shape[-1])
            .to(self.device)
        )

        smogged = smogged * (1 - alpha) + yellow_filter * alpha

        return smogged